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Abstract 
 

Regularities of combustion and autowave chemical transformation of highly exothermic mixtures CaCrO4 / Al / C and 
CaCrO4 / TiO2 / Al / Ca / C were studied. It was shown that the mixture could burn over a wide range of concentrations of 
carbon contained in it; the variation of the mixture composition made it possible to produce cast refractory chromium 
compounds with different composition and structure. The addition of titanium oxide led to a decrease in the combustion 
temperature and, accordingly, adversely affected the synthesis parameters and quality of the target product. Highly exothermic 
additive CaO2 + Al significantly increased the combustion temperature of the mixture and expanded the limits of combustion 
and phase separation. The product consisting predominantly of the target phase Ti0.8Cr0.2C and inclusions of Cr2AlC MAX 
phase and Cr7C3 was obtained. 
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The creation of new materials with a high level of 

properties is a key problem of modern technology.  
In this paper, we study the possibility of obtaining 
carbide ceramics from mixtures based on calcium 
chromate CaCrO4 by the SHS metallurgy method. 
Refractory chromium compounds Cr23C6, Cr7C3, and 
Cr3C2 possess useful properties for solving technical 
problems (high hardness, strength, and resistance to 
corrosion and wear) and are widely used in practice to 
create protective coating. Composite materials based on 
titanium chromium carbide possess higher 
characteristics than on the basis of individual carbides. 
The solubility of Cr3C2 in TiC at 1700 °C is 30 %.  
At the chromium carbide content of 30 %, the 
microhardness of titanium carbide (3000 kg/mm2) 
increases to 4000 kg/mm2 [1–3]. 

We studied two green mixtures. The overall 
reaction schemes can be represented in the forms: 

 

CaCrO4 + Al + nC = CrxCy + Al2O3 + CaO;      (1) 
 

TiO2 + (70 % Al / 30 % Ca) + C =  
 

= TiC + Al2O3 + CaO.                        (2) 

Earlier, we showed in [4] that calcium chromate 
has the capability to replace chromium oxides (Cr2O3 
and CrO3) in mixtures to obtain chromium borides.  
In the present paper, we used calcium chromate to 
obtain chromium carbides and titanium–chromium 
carbide. In the mixture (2), a part of aluminum was 
replaced by calcium for more complete reduction of 
TiO2 [5]. 

A thermodynamic analysis was carried out using 
the THERMO program [6]. In the system (1), the 
carbon content was varied to produce various 
chromium carbides: Cr23C6, Cr7C3 and Cr3C2.  
The analysis showed that the adiabatic temperature of 
the chemical transformation of the mixture Tad exceeds 
3000 K, and the products of the chemical transfor-
mation of CaCrO4 + 2Al + nC mixture at this 
temperature consist of Cr–Al–C melts (“metallic” 
phase, the desired product) and Al2O3–CaO (oxide 
phase, slag product), as well as the gas mixture of metal 
vapors (Al, Cr, Ca), suboxide (Al2O, Al2O2), and CO. 
An increase in the carbon content in the mixture n from 
0 to 3.7 % leads to a decrease in Tad and weight fraction  
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Fig. 1. Influence of the carbon content in the initial mixture  
on the calculated adiabatic temperature Tad and mass fractions 

of metallic a1 and gaseous a2 chemical conversion products 
 

of the oxide phase and an increase in the content of the 
metallic and gas phases (Fig. 1). 

The experiments on this system showed that 
within the range n = 0–3.7 %, the mixture retained the 
ability to burn. Combustion proceeded in the frontal 
mode with a constant velocity. Combustion products 
had a molded appearance and were easily divided into 
two layers: metal (target) and oxide (slag). With an 
increase in the carbon content in the initial mixture, the 
burning velocity and relative mass loss decreased 
during combustion, while the yield of the target product 
in the ingot increased (Fig. 2). 

 

 
Fig. 2. Burning velocity U, yield of metallic phase η1, and spread 

of combustion products (dispersion) η2 as a function of n 
(U = l/t, where l is the height of the mixture, t is the time of burning; 

η1 = m/M1, η2 = [(M1 – M2)/M1]×100 %, M1 is the mass  
of the initial mixture, M2 is the mass of the final combustion 

products and m is the mass of the metal ingot) 

 
Fig. 3. X-ray diffraction pattern of the product obtained  

at n = 2.4 % 
 

The results of the analysis show that the target 
products consist of different chromium carbides 
including MAX phase Cr2AlC. At n = 2.4 % (calcula-
ted carbon content to prepare Cr7C3), Cr2AlC MAX 
phase dominates in the product structure that is 
confirmed by the data of the X-ray diffraction pattern 
presented in Fig. 3.  

To produce titanium–chromium carbide TiC–
Cr3C2, the content of the mixture (2) α was varied in 
the mixture (1): 

 

α = [M2/(M1 + M2)] ⋅ 100 %, 
 

where M1 is the mass of the mixture (1), M2 is the mass 
of the mixture (2). 

The results of the thermodynamic analysis of 
mixtures, which were calculated from different ratios of 
mixtures (1) and (2), are shown in Fig. 4. As can be 
seen, an increase in (α) to 70 % led to a smooth 
decrease in the combustion temperature. Within the 
range α = 70–100 %, the combustion temperature  
 

 
 

Fig. 4. Effect of α on the calculated adiabatic temperature Tad, 
mass fractions of metallic a1 and gaseous a2  

chemical conversion products 
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