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Abstract 
 

The laws of oxidative aniline polymerization in the modification of multi-walled carbon nanotubes (CNT) with 
polyaniline (PANI) were studied. The effect of morphological features, type and method of CNT prefunctionalization on the 
temperature profile of the process and effective values of kinetic parameters and thermal effects was analyzed.  
The synthesized samples of PANI/CNT composites were studied by electron microscopy, Raman spectroscopy, 
thermogravimetry, and their specific surface area and electrical conductivity were determined. It was found that the maximum 
specific surface area Ssp belongs to composites that contain carboxylated CNTs. At the same time, the increase in the degree of 
CNT prefunctionalization by COOH-groups leads to loosening of PANI modifying layer and increasing the specific surface  
of the material. The samples prepared by polyaniline deposition on the CNT surface with a low degree  
of prefunctionalization (0.2–0.4 mmol/g) were characterized by the minimum value of electrical resistivity. Based on the 
results of modeling the interaction of carboxylated CNTs with intermediate and end products of oxidative aniline 
polymerization using molecular dynamics methods, a hypothesis was formulated about the mechanism of modification by 
CNT polyaniline. It was shown that the initiation centers of PANI macromolecules growth were formed on the CNT surface, 
while the polymer chain growth occurred in the volume of the reaction mixture. 

Using the obtained experimental data, the operating parameters of PANI/CNT composite synthesis were calculated, 
recommendations on the choice of the main apparatus design were formulated, and a scheme of the experimental and industrial 
implementation of the process was proposed. 
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Introduction 

 
Since the discovery of polyaniline to the present, 

there has been an increase in the number of studies 
devoted to the research of individual PANI synthesis 
and the production of composites based on it. This  
is evidenced by the annual increase in the number of 
publications on this topic. According to the information 
provided on the portal www.sciencedirect.com, the 
number of scientific articles and materials in the period 
from 2007 to 2017 increased from 789 to 2402 items. 
The interest in polyaniline is primarily associated with 
its electrically conductive properties. In addition, 
among other electrically conductive polymers, PANI  

is characterized by environmental stability and simple 
methods for synthesis and doping with proton acids  
[1–2]. 

The most common way to obtain PANI  
is currently the oxidative aniline polymerization which 
can be chemical [3], electrochemical [4], and enzymatic 
[5]. The literature also provides alternative methods for 
the synthesis of PANI: aniline polymerization under the 
action of X-ray irradiation in the presence of nitrate 
ions [6], dispersion polymerization in a weak magnetic 
field [7], oxidation of hydrochloride aniline with 
ammonium persulfate in non-aqueous media (acetone, 
methanol, toluene) [8]. Among these methods, chemical 
oxidative polymerization of aniline is distinguished by 
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a high yield of product from the theoretically possible 
(~ 90–95 %) and the possibility of obtaining a material 
with significant electrical conductivity (1–5 S/cm) [1].  
The aniline oxidation can be started in the acidic or 
alkaline environment. Ammonium persulphate [9] and 
ferric chloride FeCl3 [10] are most frequently used as 
oxidizing agents in the PANI synthesis. There are also 
data on using compounds of transition [11–13]  
and noble metals [14]. 

The properties of PANI determine promising areas 
of its application – microelectronics and photoelectric 
elements [15], LEDs [16], absorbing radio waves [17] 
and electromagnetic radiation materials [18], sensors 
and transducers [19], electrode materials of chemical 
current sources and supercapacitors [20–21]. 

However, the large-scale use of polyaniline is 
limited by its instability in charge / discharge processes, 
accompanied by swelling, shrinkage and destruction of 
the polymer during the doping / dedoping processes.  
In addition, at relatively high potentials, PANI 
degradation can occur. The consequence of these facts 
is the low operating potential of the polyaniline 
electrodes. Therefore, it became necessary to develop 
hybrid composite materials based on PANI and a 
dispersed substrate, as which carbon nanotubes are 
most often used [22–23]. CNTs allow to increase the 
available surface of the material and create an 
electrically conductive frame. However, the 
characteristics of the modifying layer and the final 
properties of the products, depending on the conditions 
of production, can vary in wide ranges. In addition, it is 
obvious that PANI/CNT composites for different 
applications should differ in their most important 
parameters. 

In this regard, the purpose of this study was to 
investigate the effect of the chemical composition of 
the CNTs surface acting as a dispersed substrate on the 
kinetic laws of their modification with polyaniline and 
the properties of the resulting composites, and to 
determine the conditions for the implementation of this 
process on the industrial scale. 
 

Materials and methods 
 

In order to modify polyaniline, the multi-walled 
carbon nanotubes Taunit-M (Fig. 1) and Taunit-MD 
(Fig. 2) (Tambov, NanoTechCenter), which differ in 
their volume morphology and geometrical parameters, 
were used (Table 1). 

The initial and purified from the metal oxide 
catalyst particles CNT, as well as the nanotubes 
subjected to pre-gas phase and liquid phase oxidation 
were modified. CNT oxidation was carried out by: 

 
 

Fig. 1. SEM and TEM images of CNT Taunit-M 
 

 
 

Рис. 2. SEM and TEM images of CNT Taunit-MD 
 

Table 1 
General characteristics of CNT  

Taunit-M and Taunit-MD 
 

Parameters Taunit-M Taunit-MD 

Outer diameter, nm 8–15 30–80 
Internal diameter, nm 4–8 10–20 
Length, micron 2 and more more than 20 
Specific geometric 
surface, m2/g 300–320 180–200 

 
–  hydrogen peroxide vapor at 140 °C for 30 hours 

[24]; 
–  Nitric acid vapor at 140 °C for 6 hours [25]; 
–  concentrated nitric acid at 110 °C [26]. 
According to the total content of elemental 

oxygen, CNT of the presented types can be arranged in 
the following order: oxidized in vapors H2O2 < oxidized 
in vapors HNO3 < oxidized in concentrated HNO3. 
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Table 2 

The effect of CNT on the characteristics of the oxidative aniline polymerization reaction 
 

Sample name 
Concentration 
of HCl in the 

reaction mass, М 

Temperature 
at maximum point, 

tmax, °С 

Temperature 
change, 
∆t, °С 

Time of reaching 
maximum 

temperature, min 

PANI yield, 
% 

PANI 0.1 30.0 9.0 9.7 79 

0.01 30.6 9.6 23.2 85 

PANI/CNT 
Taunit-M 

0.1 30.0 9.0 3.3 93 

0.01 26.8 5.8 5.7 79 

PANI/CNT 
Taunit-MD 

0.1 30.5 9.5 4.6 95 

0.01 29.0 8.0 6.3 85 

 
Table 3 

Characterization of the oxidative aniline polymerization reaction in the presence of the original  
and purified from the catalyst particles Taunit-M and Taunit-MD CNT  

 

Sample name 
Temperature  

at maximum point, tmax, °С 
Temperature 

change, ∆t, °С 
Time of reaching maximum 

temperature, min PANI yield, %  

PANI/ initial 
Taunit-M CNT  22.6 4.1 19.3 88 

PANI/ purified  
Taunit-M CNT 24.3 5.8 9.6 93 

PANI/ initial  
Taunit-MD CNT 21.4 2.9 18.6 86 

PANI/ purified  
Taunit-MD CNT 22.6 4.1 5.3 88 

 
purified CNTs as a dispersed substrate for the 
deposition of PANIs contributes to a more rapid 
achievement of temperature extremes: for Taunit-M 
CNT the duration of this time interval is reduced by 2 
times, for Taunit-MD CNT – by 3.5 times (Table 3). 
The removal of the metal oxide catalyst also 
contributes to the increase in temperature at the points 
of maximum tmax. The largest temperature change of 
the reaction mass ∆t is observed when using purified 
Taunit-M CNT as a dispersed substrate.  

This indirectly indicates that in this case the 
process is accompanied by the largest thermal effect. 
The yield of the target reaction product when used as a 
dispersed substrate purified Taunit-MD and Taunit-M 
CNT increases by 2 and 5 %, respectively, compared 
with the processes in the presence of the original CNT 
(Table 3). 

By the value of ∆t, it is possible to describe the 
structure of the forming PANI macromolecules. It is 
assumed that the largest temperature jump is observed 
when the longest macromolecules are formed during 

the oxidative polymerization. During the formation of 
oligomeric products, the temperature of the reaction 
mixture does not rise so much [22]. Based on 
experimental data, it can be concluded that the increase 
in the acidity of the reaction medium and the CNT pre-
purification contribute to the increase in the degree of 
PANI polymerization. 

 
The influence of the CNT functionalization method  

on the laws of oxidative polymerization  
and properties of PANI/CNT composites  

 
According to many researchers [27–28], 

prefunctionalization can contribute to the formation of 
a uniform polyaniline coating on the surface of CNT 
and the production of composites with the best 
electrophysical properties. However, with different 
methods of nanotube oxidation, the qualitative and 
quantitative composition of functional groups can vary 
in wide ranges, which can significantly affect the laws 
of oxidative polymerization. 
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Table 5 

Specific surface area of PANI  
and PANI/CNT composites 

 

Sample name SBET, m2/g 

PANI 47.9 

PANI/initial CNT 120.6 

PANI/ CNT oxidized in hydrogen 
peroxide vapor 60.2 

PANI/CNT oxidized in nitric acid vapor 78.8 

PANI/CNT oxidized with concentrated 
nitric acid 121.6 

 
For composites based on functionalized CNTs, the 

electrical resistivity was measured (Table 6) and the 
decrease in its value with increasing compacting 
pressure was found. Composites based on carbon 
nanotubes oxidized in hydrogen peroxide vapors  
(2.8 and 1.9 ohm·cm with a compacting pressure of 10 
and 20 MPa, respectively) have the best conductive 
properties. It can be assumed that the conductive 
properties of materials of this type are due to the 
perfect structure of the graphene CNT layers. Indeed, 
according to [24], CNT oxidized in hydrogen peroxide 
vapors have the smallest indicator of the surface 
defectiveness. 

According to the TG curves (Fig. 6) of the 
PANI/CNT composites, the loss of residual moisture is 
observed at 150 °C. At t ≥ 370 °С an irreversible 
thermal decomposition of the material begins. The 
position of the most pronounced peaks on DSC curves 
(Fig. 6) for samples based on functionalized CNTs 
corresponds to a temperature of 580–600 °C. And as 
the content of atomic oxygen on the polyaniline-
modified CNT surface increases, the height of the  

 
Table 6 

Electrical resistivity  
of PANI/CNT Taunit-M composites 

 

Method of CNT 
oxidative 

functionalization 

Specific electrical resistance 
(ohm⋅cm) at compact pressure 
10 МPа 20 МPа 

– 5,1 3,0 
Hydrogen peroxide 
vapor oxidation 2,8 1,9 

Nitric acid vapor 
oxidation 5,7 4,3 

Oxidation with 
concentrated nitric acid 3,6 2,6 

 
 

Fig. 6. TG and DSC curves of PANI/CNT  
Taunit-M composites based on:  

purified CNT (1); CNT oxidized in hydrogen peroxide vapors (2); 
CNT oxidized in nitric acid vapor (3);  

CNT oxidized with concentrated nitric acid (4) 
 
peaks on the DSC curves decreases, while the width 
increases. For composites based on purified Taunit-M 
CNT (Fig. 6, curve 1), the extremum on the DSC curve 
is observed at a lower temperature (540–580 ºС). 
Moreover, its height is only slightly lower than for a 
similar curve for a composite sample obtained on the 
basis of CNT with minimum oxygen content. The 
revealed patterns indicate the change in the nature of 
the interaction of the polyaniline coating with the 
surface of nanotubes in the presence of functional 
groups. The comparison of thermogravimetric data with 
the results of Raman spectroscopy suggests that a 
certain contribution to the nature of this interaction 
makes the change in the qualitative structure of PANI 
macromolecules in the modifying layer. The composite 
obtained on the basis of CNT oxidized in hydrogen 
peroxide vapors, characterized by the minimum number 
of structural defects, has the highest thermal stability. 
Thus, the perfection of the CNT structure has a decisive 
effect on the electrical conductivity of PANI 
composites and their thermal stability. However, the 
presence of functional groups provides the most 
complete interaction of the modifying layer with the 
surface of the nanotube. 

 
The effect of the degree of CNT functionalization  

by carboxyl groups on the laws  of oxidative 
polymerization and properties of PANI/CNT 

composites  
 

The degree of functionalization of COOH groups 
and the morphological features of CNT show the effect 
on the kinetics of oxidative aniline polymerization. 
When modifying the carboxylated Taunit-M and 
Taunit-MD CNTs, the maximum temperature at the 
extremum points was fixed during PANI deposition on 
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Fig. 9. TG and DSC curves of polyaniline samples (1) and its composites with initial (2) and carboxylated Taunit-M CNTs with a 
degree of COOH groups functionalization equal to 0.2 (3), 0.5 (4) and 1.3 mmol/g (5) 

 
according to electron microscopy, the increase in Df 
contributes to the loosening of the modifying PANI 
layer, which can also lead to the deterioration of the 
conductive properties. 

Shallow CNT prefunctionalization with carboxyl 
groups also contributes to the improvement of the 
capacitive properties of the composites (Table 9). 
Materials based on polyaniline-modified CNTs with a 
low degree of functionalization (Taunit-M – 0.2 mmol/g; 
Taunit-MD – 0.4 mmol/g) show the best capacitive 
properties. However, the remaining PANI/CNT 
composites are characterized by consistently high 
values of electrical capacitance, which are maintained 
for at least 100 charge/discharge cycles. 

Analysis of the TG and DSC curves (Fig. 9) shows 
that the thermal stability of PANI/CNT composite 
materials, as the degree of preliminary functionalization 
of CNT increases, first increases and then falls. It 
should be noted that the destruction of an individual 
PANI begins at a temperature of about 320 °C (Fig. 9, 
curve 1), while the irreversible destruction of the 
PANI/CNT composites begins at a temperature  
of 380 °C. 

 
Investigation of the mechanisms  

for the modification of polyaniline-carboxylated CNTs  
by molecular dynamics methods 

 
To explain the revealed laws by the molecular 

dynamics method, the modeling of the system 
evolution, including carboxylated CNTs, was carried 
out during the oxidative aniline polymerization  
at pH < 2. 

At the initial stage of the process, sorption of 
protonated aniline is observed on the outer surface of 
CNT (Fig. 10a). Then, due to thermal motion, the 
sorbed particles begin to converge. In some cases, this 
leads to the formation of chemical bonds with the 
formation of dimers. In this model, it was taken into 
account that these dimers cyclize with the formation of 
phenazine (Fig. 10b). The results of the calculation 
showed that the formation of dimers with their further 
cyclization occurs on the CNT surface, and not in the 
volume of the reaction mixture. Then, a protonated 
aniline particle is attached to phenazine, and a trimeric 
structure is formed – the phenazine nucleic acid, which 
is the center of growth initiation for the PANI 
macromolecule [31]. Further calculation shows that the 
formed trimeric structures begin to move away from 
the surface of the nanotubes and after 10 ps they desorb 
into the volume of the reaction mixture (Fig. 10c).  

At the next stage of the process, the polymer 
polyaniline chain begins to grow in the form of 
protonated emeraldine. At an exposure time of 20 ps 
(Fig. 11a) two PANI macromolecules approach CNT, 
and at 54 ps PANI adsorption on the CNT surface 
begins (Fig. 11b). 

At an exposure time of 54 ps the approach of the 
PANI macromolecules to the CNT surface begins. 
However, only some of the molecules are sorbed; the 
rest, with a further increase in exposure time (86 ps), 
move away to such a distance from the CNT surface 
that they no longer influence the value of the potential 
interaction energy “polyaniline – carboxylated CNT” 
(Fig. 11c). 
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Fig. 12. Fragment of the surface of a carbon nanotube  
and polyaniline macromolecule. COOH groups are marked 

with arrows 
 

molecule falls in the field of attraction forces to the 
surface of the nanotube free from functional groups.  
As a result, the polymer chain begins to shift relative to 
the COOH group, remaining from it at a distance of r1, 
and at the same time approaching the CNT surface at a 
distance of r2 corresponding to the maximum effect of 
attraction forces. Consequently, the PANI macro-
molecule reaches the minimum state of the potential 
energy of interaction with both the carboxyl groups and 
the surface of the nanotube, being located at a distance 
of r1 and r2 from them, respectively. 

In the case when the distance between adjacent 
carboxyl groups on the CNT surface does not exceed 
2r1, the PANI molecule is not able to approach the 
CNT surface by the distance r2. This leads to the 
decrease in the total energy of polyaniline retention and 
the instability of the modifying layer. As a result, PANI 
macromolecules will be located at a large distance from 
the CNT surface, forming a loose layer or inclusion of 
individual polyaniline. This composite structure does 
not provide contact between the CNT surface and the 

modifying layer, which contributes to the decrease in 
the conductive and capacitive properties. 

Based on the mentioned hypothesis, an equation 
was proposed for calculating the degree of CNT 
prefunctionalization with COOH groups (ϕ), which will 
ensure the formation of the most stable modifying layer 
provided that these groups are evenly distributed on the 
surface of the nanotube.  

 

( )222
1 dDrN

D
−ρ

=ϕ , 

 

where ρ – graphite density, kg/m3; D, d – CNT outer 
and inner diameter, respectively, m; N – Avogadro 
number. 

 
Evaluation of the kinetic parameters  

of the modification process of carbon nanotubes 
surface with polyaniline 

 
The method of studying the kinetics of the 

oxidative aniline polymerization process in the 
presence of CNT is based on solving an inverse 
problem of mathematical modeling of the non-
stationary heat exchange process. The differential 
equation describing the change in temperature of the 
reaction mixture in a laboratory reactor is: 

 

( ) ( )
cccc cm

jMt
cm

kF
d

dt
=τ+

τ
τ

1
1 ,                (1) 

 

( ) ( ) осttt −τ=τ1 ,                       (2) 
 

Initial conditions:  
 

( ) ,0 01 осttt −=                               (3) 
 

where k – heat transfer coefficient, W/(m2·K); F – heat 
exchange surface with the environment, m2; mc – mass 
 

 

 
 

Fig. 13. Diagram of carboxylated CNT and polyaniline molecule interaction 
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Mathematical modeling of the kinetics of modifying 

carbon nanotubes with polyaniline 
 

The development of industrial technology for 
producing modified polyaniline CNTs is inextricably 
linked with the calculation of the determining 
dimensions of the reaction equipment and operating 
parameters of the process. It is commonly known that 
chemical processes cannot be directly scaled from a 
laboratory setup to an industrial reactor. To solve this 
problem, methods of mathematical modeling are used. 
The analysis of the experimental data showed a high 
value of the temperature coefficient of the chemical 
reaction rate, which requires taking into account 
changes in the temperature of the reaction mass in the 
reactor during kinetic calculations. A number of 
assumptions were made (the laboratory reactor operates 
in perfect mixing mode; the process of modifying 
CNTs with polyaniline takes place under kinetic 
control; the oxidative aniline polymerization proceeds 
in one stage, and the thermal effect of the reaction has a 
constant value; the heat from the operation of the 
mixing device can be neglected), considering which the 
kinetics of the CNT modifying process with polyaniline 
can be described using a system of differential 
equations. 

The change in PANI mass in the process of 
modifying CNTs: 

 

( )
( )( ) camс

tR
Ek

d
dm a ⎟

⎠

⎞
⎜
⎝

⎛
τ+

−
=

τ
τ

15,273
exp0 ,          (5) 

  

Initial conditions:  
 

( ) 00 =m ,                                       (6) 
 

where са – aniline concentration, kg/kg. 
The temperature change in the reaction mass in the 

process of modifying carbon nanotubes with 
polyaniline: 

 

( ) ( ) BtA
d

dt
=τ+

τ
τ

.                      (7) 
 

Initial conditions:  
 

( ) s0 tt = ,                                 (8) 
where  

cccm
kFA = ; Wt

cm
kF

cm

Mj
B oc

cccc

Q −−= .         (9) 
 

As a result of the analytical solution of differential 
equations, the system (5) – (9) was reduced to the 
system of algebraic equations, the roots of which were 
determined by the numerical method. The findings 
which make it possible to determine the allowable 
operating parameters are presented in Fig. 15. 

 
 

Fig. 15. The calculation results of the kinetics of the CNT 
modification processes with polyaniline 

 
During the process (2 hours), the mass of the 

obtained polyaniline was 3.048 kg, the aniline 
concentration decreased from 5.50·10–3 to  
1.05·10–3 kg/kg. The temperature of the reaction mass 
increased by no more than 1 °C, which is explained by 
the high heat capacity of the reaction mixture and the 
low aniline concentration. The technological mode 
obtained as a result of the calculations is recommended 
as the main one in industrial production, the data on the 
temperature change made it possible to recommend the 
use of a reactor without a heat exchange device. 

 
Conclusion 

 
The laws governing the oxidative aniline 

polymerization in the presence of carbon nanotubes 
with different morphology and chemical composition 
of the surface were investigated. The values of the 
exothermic thermal effect of the processes, which were 
416–2270 kJ/mol, were determined. It was shown that 
the presence of carbon nanotubes in the reaction mass 
contributes to the increase in the reaction rate and the 
reduction in the duration of the induction period. As the 
content of oxygen-containing groups on the CNT 
surface increases, the thermal effect of the process 
increases, and the rate of reaching the extremum of 
temperatures on the dependence t = f(τ) is maximum in 
the presence of oxidized CNTs with the lowest content 
of functional groups. 

The relationship between the characteristics of 
carbon nanotubes and the properties of synthesized 
composites with PANI was shown. It was established 
that both the CNT morphology and the chemical 
composition of the surface (the degree of 
prefunctionalization) affects the electrical conductivity 
and electrical intensity of the synthesized materials. 
Composites based on carboxylated CNTs with a low 
degree of functionalization (Df = 0.2–0.4 mmol/g) have 
the best electrophysical indicators. There is a tendency 
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to increase the specific surface of the composites with 
increasing Df. Materials based on CNTs with a high 
degree of functionalization (1.3 mmol/g) have lower 
thermal stability (intense mass loss occurs when heated 
to 320 °C) compared to CNT-based composites with an 
average (0.3–0.6 mmol/g) value of the functionalization 
degree (mass loss begins at a temperature of > 380 °C). 

A hypothesis about the mechanism of modifying 
carboxylated CNTs with polyaniline was formulated, 
according to which phenazine nucleotides during 
oxidative aniline polymerization form on the CNT 
surface, desorb into the volume of the reaction mixture, 
where the PANI macromolecules grow. 

A mathematical model of the non-stationary 
temperature field of the reaction mass in the process of 
oxidative aniline polymerization in the presence of 
CNTs was developed, which allowed the kinetic and 
thermodynamic characteristics of the chemical process 
(rate constant and thermal effect of the reaction) 
occurring in the non-stationary temperature mode to be 
determined. 

It has been shown that the use of the kinetic 
equation of a first-order chemical reaction for 
describing the kinetics of the CNT polyaniline-
modifying process due to high values of the 
temperature coefficient of the chemical reaction is 
possible only together with solving the problem of non-
stationary heat exchange. 

The mathematical model of the combined process 
of modifying the CNT surface with polyaniline, 
describing its kinetics in the non-stationary temperature 
field of the reaction area of the apparatus, was 
developed. The model was used to determine a number 
of design and operating parameters of the reactor 
(initial aniline concentration – 0.0055 kg/kg, process 
time – 2 hours, no need for a heat exchanging device 
was confirmed). 
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