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Abstract 
 

The present paper considers the effect of carbon nanotubes, used as the main component of a modifying comprehensive nanoadditive, 
on the kinetics of cement hydration, the phase composition and the strength characteristics of a cement stone. The increase in the strength 
characteristics of the cement stone modified by the nanoadditive was found to be due to the acceleration of the cement hydration, the 
formation of an optimum microstructure, in which, according to X-ray phase analysis, additional formation of low-basic calcium 
hydrosilicates already takes place during the initial period of hardening. Based on scanning electron microscopy, additional directional 
crystallization of particles of cement stone neoplasms, mainly with contacts of intergrowth, was elucidated. Accelerated curing kinetics of the 
nanomodified samples was observed to take place with an increase in the compressive strength of 20–30 % at the age of 28 days. 
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Introduction 
 

The formation of composites for construction 
purposes is determined by the following factors: type 
and characteristics of cement (chemical and 
mineralogical composition, fineness of grind, presence 
of mineral and other additives in the cement 
composition); water/cement ratio value; additional 
mechanical and chemical activation of cement; mixing 
conditions and modes; temperature hardening 
conditions; introduction of special additives to the 
concrete mixture, including those ones that exert their 
effect at the micro- and nanostructured levels of 
cement stone and concrete [1]. 

During the last period of time (10–20 years) there 
has been a significant transition in technologies and 
properties of construction materials; new types of 
composites – high-tech, high-strength, and low-
shrinkage – have appeared. 

Simultaneously with the development of 
construction materials, new classes of additives have 

been added to the agenda. They are related to deeper 
mechanisms of structure formation, and can comprise 
nanoadditives or nanomodifiers [2]. 

The modification of composites using various 
nanomodifiers, including carbon-containing ones, 
seems promising, since their introduction significantly 
improves the physical and mechanical characteristics 
at low dosages of additives and allows to directly 
adjust the material structure of the material through the 
manifestation of various effects [2–5].  

However, due to the high surface energy of 
nanoparticles when using them as nanomodifier 
components, they can be prone to agglomeration; the 
size of agglomerates can reach micrometer scales. 

In principle, the nanomodification of composites 
can be performed in two main ways: 1) nanostructures 
having preset parameters and sizes are pre-synthesized, 
and then introduced into the raw mixture; and  
2) directed nanoparticle synthesis is realized in the 
system, due to which the nanomodification of the 
material structure takes place. 
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When implementing the second method, the 

essential difficulties in introducing the nanomodifier 
and its uniform distribution are minimized as much as 
possible. If pre-synthesized nanostructures (for 
example, a dry component mixture) are used, they 
must be additionally prepared for introducing into the 
composite structure. The most common way is to 
prepare an aqueous suspension based on them. 

The analysis of works [4, 5] dedicated to this 
subject shows that the structure and mechanical 
characteristics of cement composites modified by 
carbon nanoadditives make it possible to significantly 
increase the values of physical and mechanical 
indicators. According to the authors, these changes 
were achieved due to the formation of a less porous 
structure in nanomodified samples and a greater 
amount of calcium hydrosilicates compared with non-
modified samples. 

The effect of mixing water structured with 
fulleroid nanoparticles on the cement stone 
characteristics was considered by Pukharenko and his 
co-authors [6]. They established that the 
nanostructuring of mixing water leads to a 1.4– 
1.7 times decrease in the viscosity of the cement paste. 
The results indicate a significant qualitative increase in 
the indices of workability and preservation of the 
given mobility when maintaining a fixed consumption 
of cement or reducing it. 

In papers [7, 8], mathematical modeling of the 
changes in the properties of nanomodified composites 
and the effect of the used carbon nanoadditives on the 
strength characteristics of the material were studied. 
The analysis of the microstructure of the nanomodified 
samples allowed elucidation of the formation of 
individual crystallites of calcium hydrosilicates located 
in the zone of close contact of carbon nanoparticles, 
which contributes to the filling of microvoids and the 
creation of a single structure. The dependences 
between the length of carbon nanotubes and the 
processes associated with the agglomeration of 
nanoparticles in the bulk of the composite structure 
were revealed. When "shorter" carbon nanotubes were 
used, the accumulation of particles was absent or not 
significantly observed. 

The processes of concrete nanomodification using 
carbon nanotubes have been studied by researchers 
from St. Petersburg under the leadership of A. 
Ponomarev. The scientists have developed a modifier 
on the basis of a water-soluble fullerene, the 
application of which is directed at construction 
materials [9, 10]. The modifier possesses the following 
properties: bulk density of 600–900 kg⋅m–3, and 
average cluster size of 300 nm. Using this material  

in cement mixtures (0.15 % of cement mass) leads to a 
change in mobility in the range from M1 to M5, 
substantially increasing the strength parameters in the 
range of 25–40 %.  

The analysis of the results of studies [11, 12] 
showed an increase in the physical and mechanical 
characteristics of construction composite samples 
when using a multifunctional additive dispersion based 
on multiwalled carbon nanotubes at the dosage level of 
0.006 % of the binder (gypsum, cement), thereby 
contributing to an increase in the strength at early 
stages of hardening (day 7) and being about 55 % in 
comparison with reference compounds. 

Thus, the aim of the present paper is to study the 
effect of carbon nanotubes used as a modifying 
comprehensive nanoadditive on the kinetics of cement 
hydration, the phase composition and the strength 
characteristics of a cement stone.  

 
Materials and methods 

 
In the present work, the experimental data on 

employing the above-mentioned comprehensive 
nanoadditive to modify the cement stone are presented. 

“Taunit”-series multiwalled carbon nanotubes 
(CNTs) produced at NanoTechCenter Ltd. (Tambov, 
Russia) were used as the main component of the 
additive. The outer and inner diameters of these CNTs 
are 40 and 5 nm, respectively, their density is  
560 kg⋅m–3, and the average length of single nanotubes 
is 2 microns (Fig. 1). 

The nanomodifier used herein represents a 
colloidal system (Table 1), the synthesis of which was 
carried out by ultrasonic treatment of the CNTs in an 
aqueous medium additionally containing surfactants. 

The procedure for obtaining modifying additives 
and optimum formulations was used based on 
previously developed parameters [13]. The impact  
of ultrasound to the system was carried out on an  
IL-100-6/4 ultrasonic device; the optimum dispersion 
time was 20–30 min, and the amplitude of oscillations 
was at the frequency of 22 kHz (Table 1).  
The dispersibility of the CNTs and the stability of the 
resulting dispersions were monitored on a KFK-3 
photocolorimeter at the wavelength of 500 nm. The 
distribution of the nanomaterials in the aqueous 
suspension was estimated from the optical density of 
colloidal solutions [14]. Polyvinylpyrrolidone was the 
main surfactant contributing to the preservation of the 
system in the sedimentation-stable state. The optimum 
ratio of the components (carbon nanomaterials : 
surfactants on a dry matter basis was 1 : 2). 
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CNT agglomerates 

 
Cavitation bubbles 

 
Cavitation bubble collapse 

 
Fig. 2. Interaction between CNTs and surfactants as a result of sonication in an aqueous medium 

 
The use of the surfactants is due to the need for 

reducing the coagulation effect in the suspension and 
the decrease in the surface interphase energy, which 
greatly simplifies the dispersion process (Fig. 2). 

The suspensions were stabilized due to the 
formation of an adsorption layer onto the surface of the 
CNTs by means of the surfactant medium. This layer 
prevents CNT convergence, thereby saving the unique 
properties of nanostructures (adsorption, 
chemisorptions, topological effect). In this case, the 
activated water with the CNTs represented mixing 
water for the cement hardening system. Thus, the 
problem of uniform distribution of nanostructures in 
the construction composite was solved. Based on 
preliminary experimental studies, the optimum 
concentration dosage of the comprehensive carbon 
nanoadditive in the cement composition was 
determined, which was found to be 0.0001–0.0007 % 
of cement weight [15, 16]. 

This concentration interval experimentally 
obtained for the nanomodifier application corresponds 
to a qualitative change in the physical and mechanical 
characteristics of the modified composite and 
promotes the production of a sedimentation-stable 
CNTs-based suspension with optimum use and storage 
parameters (not more than three days). It can be 
assumed that the availability of such a dosage interval 
is associated with high chemical activity and a large 
reactively active surface area of the carbon 
nanomodifiers. It is most likely that conditions, under 
which chemically active carbon nanostructures retain a 
part of the required mixing water, are created when 
increasing the CNTs dosage. In this case, the 
formation of water deficiency possibly takes place for 
the mineral hydration of the binder material. 

The dosage intervals applied for the nanoadditives 
have also been confirmed by other authors [17–20].  

In the experimental studies, CEM I 42.5 Portland 
cement (Russian Standard GOST 31108–2003) and the 
above-mentioned nanoadditives (the dosage of  

0.0006 %) were used for the production of a cement 
paste having a water/cement (W/C) ratio of 0.33. The 
kinetics parameters of the cement hydration process 
were studied under normal conditions, the duration of 
the process was 1, 3, 7, 14 and 28 days. The phase 
composition of the reference and nanomodified cement 
stones was monitored by X-ray diffractometry (CuKα 
radiation, λ = 1.5406 Å, D2 Phaser Bruker 
diffractometer); the data were processed automatically 
using the PDWin 4.0 software. The hydration degree 
was calculated [21] according to the following 
formula: 

( ) %1001SC
0

mod
3 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

I
ICh ,                     (1) 

where modI  is the intensity of the diffraction 
maximum at d = 2.75 Å of the 3СаО⋅SiO2 (C3S) phase 
of samples having different composition and cement 
hydration time; 0I  is the intensity of the diffraction 
maximum at d = 2.75 Å of the 3СаО⋅SiO2 (C3S) phase 
of the initial cement. 

The compressive strength of the cement stone was 
determined after 1, 3, 7, 14 and 28 days of hardening 
under normal conditions. The samples (size  
5 × 5 × 5 cm) were tested using an IP-500M-Auto 
system. To ensure statistical reliability of the physical 
and mechanical test results, the number of the samples 
in the series was 9–12. It was determined that the intra-
series coefficient of variability of the strength 
evaluation results did not exceed 7–10 %. 

 
Results and discussion 

 
The generalization of the experimental data shows 

that in the systems containing the nanomodifying 
additives the cement hydration process is substantially 
accelerated (Fig. 3, Table 2): for a daily hardening 
time, the hydration degree for samples 3 and 4 reaches 
the values of about 50 %, which in the reference 
system is achieved only on the 28th day. 
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