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Abstract 
 

Some sections of the theory of shock-wave processes in condensed media require substantial refinement. From a detailed 
analysis of the concept of heat of reaction, it follows that the three known heats of reaction characterize the same 
transformation of the reacting medium from three different sides. When considering the flows of a reacting medium, it is 
necessary to take into account turbulence and its changes as an analogue of thermal motion and physicochemical 
transformations of matter. Based on the analysis of the results of a unique experiment, it was concluded that the deformation of 
the condensed medium is a factor that determines the reaction rate along with temperature. 
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Introduction 

 

This article analyses three fundamental issues to 
which insufficient attention is paid in the studies on the 
physics of explosion. The first question is that there are 
at least three different heats of the same reaction.  
But this is usually not taken into account in the studies 
on the physics of explosion. The second question – in 
the case of condensed media, turbulence is usually 
neglected, although it is turbulence, if present, that 
determines the structure of the shock or detonation 
wave. The third question is that temperature is usually 
considered the main external factor that determines the 
reaction rate. However, there is an experiment 
according to which the current deformation rate of the 
medium is also such a factor. 

We consider these issues in more detail. 
 

Determination of the heat of reaction 
 

Researchers of explosives tend to believe that each 
explosive can be assigned a certain heat of reaction 
Q(α),  where the chemical composition α, for 
simplicity, will be considered one-component. 
Therefore, in studies of explosives, expressions of the 
form: 

 

( ) ( ) ( )α+α=α QYXEYXE h ,,,,  

are frequent, where E is specific internal energy, Eh is 
the measure of the thermal motion and mechanical 
stresses of the medium, here and in what follows 
arguments X, Y  represent a pair of independent 
parameters (P, V), (P, T) or (V, T). Here P is pressure, 
V is specific volume, T is temperature. 

However, for an unambiguous division of the 
internal energy of the medium into two parts, 
appropriate physical criteria are needed. In particular, a 
criterion is needed that allows dividing unambiguously 
the measure of motion of all valence electrons between 
mechanical stresses and chemical bonds. Since such 
criteria are not known today, it is better to abandon the 
division of the internal energy of the medium into parts 
as an unnecessary complication of the theory of 
explosives. Therefore, we will consider the internal 
energy of the reacting medium as a whole. This is 
considered in manuals on thermodynamics, in 
particular, in the well-known course of theoretical 
physics by L.D. Landau and E.M. Lifshitz [1, 2]. 

It follows from what has been said that the heat of 
reaction can be determined only in relation to a 
preselected initial state of the explosive. We denote the 
parameters of such a state by the index zero – E0, P0, 
V0, T0, α0 and represent it by the point P0, V0 on the  
P–V plane (Fig. 1). 
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Fig. 1. Isotherms of reaction products on the P–V plane:  

A a for T = T0; B for T = 0 K 
 
We consider the same chemical transformation of 

explosive α0 → α, occurring under three different 
conditions – at constant V and T, at constant P and T, 
and at constant P and V. The final composition is not 
necessarily equilibrium. The corresponding final states 
of the reaction products are designated on the P–V 
plane by points 1, 2, and 3 (Fig. 1). Points 1 and 2 are 
located on the T0 isotherm of the reaction products, and 
point 3 coincides with point P0, V0. It should be borne 
in mind that the state P0, V0, α exists for the reaction 
products only under the condition that the zero 
isotherm of these products (T = 0 K) passes below the 
initial state of the explosive in pressure (Fig. 1). 

We present the expressions of three heats of the 
same reaction α0 → α: 

 

( ) ( ) =α−α== ,,,, 01000 VPEVPEQQ VTV  
 

( ) ( ) ,,,,, 00000 α−α= VPETVE                     (1) 
 

( ) ( ) =−−α−== 020200 ,, VVPVPEEQQ PTP  
 

( ) ( ) ,,, 020000 VVPTPEE −−α−=                (2) 
 

( ) ( ) .,,,, 00000 α−α= VPEVPEQPV                     (3) 
 

Below, when using expression (3), it will be assumed 
that the state P0, V0, α for the reaction products exists. 

As is known from [3], one more heat of reaction is 
determined in calorimetric bombs – the calorimetric 
heat of reaction Qcal. An analysis of the processes in 
such bombs leads to the determination of the heat Qcal 
and its relationship with QPT: 
 

( ) ( ) =α−α= ,,,, 20000cal VPEVPEQ  
 

( ) ( ) ,,,,, 00000 α−α= TPETPE               (4) 
 

( ) .020cal VVPQQPT −−=                           (5) 
 

As you know, the last expression is used to calculate QP 
for Qcal. 

In many studies, the heat Qcal  (4) is often denoted 
as QV  and is identified with the heat QVT (1), and 
expression (5) is interpreted as the ratio between QP 
and QV  (see in [3, p. 126]). 

This is an error, and indeed, according to 
equations (1) and (4), from Qcal = QVT it follows 
( ) ( )α=α ,,,, 0000 TPETVE . The last equality is possible 

if only on the entire isotherm T0 between points 1 and 2 
(Fig. 1) the products satisfy the Mendeleev–Clapeyron 
equation. But this is certainly not true at point 1, where 
the products are compressed to the density of the 
condensed explosive. 

We define the role of each heat of reaction in 
physical processes. 

We start by considering the heat QPV, proposed in 
monograph [4]. From the expression for the energy 
conservation law in a shock jump [2, 4]: 

 

( ) ( )
( )( )

2
,,,, 00

000
VVPP

VPEVPE
−+

=α−α  
 

taking into account  QPV (3) we obtain: 
 

( ) ( )
( )( )

.
2

,,,, 00
00 PVQ

VVPP
VPEVPE +

−+
=α−α   (6) 

 

It is easy to show that expression (6) if QPV > 0 is  
detonation adiabat, and if QPV = 0 it is a shock adiabat 
without reaction, and if QPV < 0 it is shock adiabat with 
reaction. Thus, the heat of reaction QPV (3) determines 
the type of shock-wave process. 

To determine the role of different heats of reaction 
in a shockless flow, we turn to the first law of 
thermodynamics: 

dt

dV
P

dt

dq

dt

dE
−= ,                         (7) 

 

where t is time, q is heat entering the considered 
particle of reaction products from the outside, i.e. from 
neighboring particles. 

We differentiate in expression (7) E and  V as 
complex functions of t taking into account the 
determination of the heats of reaction (1) – (3) and 
thermodynamic identities: 
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where S is specific entropy, while X and Y represent V 
and P, V and T or P and V. The obtained expressions 
are transformed using the formulas for the specific heat 
capacitiesСP, СV and the Grüneisen coefficient Г: 
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These formulas are actually definitions of CР, СV  
and Г. 

As a result, we find: 
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Note that q and QXY enter each of expressions  
(10) – (12) in the same way, i.e. each heat of reaction in 
the equations plays the same role as the external heat. 

From expressions (6), (10) – (12) it follows that of 
the three heats of reaction QVT, QPT and QPV, the main 
one cannot be distinguished. Each of them plays a 
decisive role in the movements of the environment. 
This must be borne in mind when analyzing and 
calculating shock-wave processes. 

 
On turbulent shock-wave motion 

 

In condensed reacting media, a turbulent shock-
wave process is often observed. It arises due to the 
initial inhomogeneity of the medium and the instability 
of its laminar motion. In the theories of such a process, 
equations are developed for the averaged motion of  
a plane turbulent stationary shock or detonation wave 
in a charge of physically infinitely large diameter in the 
frame of reference associated with this wave (Fig. 2). 

 

 
 

Fig. 2. The structure of a shock jump  
in a turbulent shock-wave process: 
1 –  section part free of the δ-section;  

2 – δ-section; 3 – shock front 

We consider the most developed of these theories  
[4, 5]. Its peculiarity lies in the fact that the parameters 
of the medium flow are averaged not only over the 
cross sections of the charge, but also over the parts of 
these sections, which are called δ-sections (Fig. 2).  
The δ-section is determined as a part of the section, to 
which the initial flow of the medium does not reach.  
At each section, the δ-section changes its configuration 
over time, but keeps its area constant due to the 
stationarity of the process. This area, with distance 
from the beginning of the wave, increases from zero at 
the beginning of the wave to the cross-sectional area. 

Another feature of the theory [4, 5] is that only  
a part of the parameters, among which the density ρ,  
is averaged with a weight function equal to unity.  
The corresponding averages are denoted by the bar 
above. The other part of the parameters is averaged 
with the weight function ρρ / , and the corresponding 
averages are denoted by two bars above. 

When averaging over the sections and over the  
δ-sections, we obtain the same type of system of shock-
wave equations: 

( )uDD −ρ=ρ0 ;                             (13) 
 

uDPPef 00 ρ=− ;                             (14) 
 

( )( )
.

2 0

00
0

D

qVVPP
EE efef

ef
ρ

+
−+

=−         (15) 

 

Here D and u are the wave and mass velocities of the 
shock or detonation wave, respectively, effective 
pressure Pef, effective internal energy Eef  and effective 
heat flux qef  are determined by the expressions: 
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where ux, uy, uz are turbulent pulsation velocity 
components. In the case of isotropic turbulence, qef = 0. 
In a turbulent shock-wave process, the effective 
quantities Pef, Eef and qef behave similarly to the 
corresponding quantities in a laminar process. 

In the system of equations (13) – (18), obtained by 
averaging over the cross sections, the initial point of the 
shock or detonation wave lies at the pressure P0. On the 
contrary, in the system of equations (13) – (18), 
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