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Abstract: The inertia of silicon carbide (SiC) when creating polymer composite materials (PCM) often does not allow 
creating a high-quality final product. This is due to the weak interfacial interaction between the filler and the polymer.  
This paper presents a method for modifying silicon carbide with a controlled content of 3-aminopropyltriethoxysilane 
(APTES) on its surface. The modifier will create active functional groups on the surface of silicon carbide, and they will 
be the first to interact. In the study, a step-by-step assessment of the change in the surface of filler particles during the 
formation of reactive groups by IR spectroscopy was carried out and the effect of the proposed method on the bulk density 
of SiC particles was determined. The presented work contains data on the study of the adsorption kinetics of the filler after 
its modification, and describes the conditions under which the most complete addition of functional groups occurs during 
treatment with silane.The factors that can be used to vary the content of functional groups on the surface of silicon carbide, 
thus changing its activity, have been identified. The effectiveness of the proposed modification method is shown and 
samples with a reactive surface of SiC particles are obtained, which are the most promising for the creation of polymer 
composite materials. 
 
Keywords: silicon carbide; filler modification method; aminopropyltriethoxysilane; APTES; polymer composite material; 
chemisorptions; polyimide. 
 
For citation: Flerko MYu, Voronina SYu, Antishin DV, Shalygina TA, Semenukha OV. A method for modifying the 
surface of silicon carbide with a controlled number of functional groups on surface. Journal of Advanced Materials and 
Technologies. 2022;7(4):281-289. DOI: 10.17277/jamt.2022.04.pp.281-289 

 
 

Способ модификации поверхности карбида кремния  
с управляемым количеством функциональных групп на его поверхности 

 
© М. Ю. Флеркоa,С. Ю. Воронина a ,  

Д. В. Антишинa, Т. А. Шалыгинаa, О. В. Семенухаa 
 

a Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева,  
пр-кт имени газеты «Красноярский рабочий», 31, Красноярск, 660037, Российская Федерация 

 
  simkina_svetlana@mail.ru 

 
Аннотация: Инертность карбида кремния (SiC) при создании полимерных композиционных материалов (ПКМ) 
часто не позволяет создать качественное конечное изделие. Это обусловлено слабым межфазным 
взаимодействием между наполнителем и полимером. В данной работе представлен способ модификации карбида 
кремния с управляемым содержанием 3-аминопропилтриэтоксисилана (АПТЭС) на его поверхности. 
Модификатор создает активные функциональные группы на поверхности карбида кремния, и именно они будут 
первыми вступать во взаимодействие. В исследовании проведена поэтапная оценка изменения поверхности частиц 
наполнителя при образовании реакционноспособных групп методом ИК-спектроскопии, и определено влияние 
предлагаемого способа на насыпную плотность частиц SiC. Представленная работа содержит данные об 
исследовании кинетики адсорбции наполнителя после его модификации и описывает условия, при которых 
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происходит наиболее полное присоединение функциональных групп при обработке силаном. Выявлены факторы, 
с помощью которых можно варьировать содержание функциональных групп на поверхности карбида кремния, 
изменяя таким образом ее активность. Показана эффективность предложенного метода модификации и получены 
образцы с реакционноспособной поверхностью частиц SiC, являющиеся наиболее перспективными для создания 
полимерных композиционных материалов. 
 
Ключевые слова: карбид кремния; модификация поверхности; аминопропилтриэтоксисилан; АПТЭС; 
полимерный композиционный материал; хемосорбция; полиимид. 
 
Для цитирования: Flerko MYu, Voronina SYu, Antishin DV, Shalygina TA, Semenukha OV. A method for modifying 
the surface of silicon carbide with a controlled number of functional groups on surface. Journal of Advanced Materials and 
Technologies. 2022;7(4):281-289. DOI: 10.17277/jamt.2022.04.pp.281-289 
 

1. Introduction 
 

The development of modern technology requires 
new structural materials that are superior in strength, 
elasticity and properties. Most of the polymer 
composites are developed for the aerospace industry. 
At the same time, these materials and technologies 
for their production are also promising in many other 
industries, such as construction, shipbuilding, 
mechanical engineering, energy, instrumentation, 
medicine, railway engineering and other industries. 

The development of polymer composite 
materials (PCM) technology currently depends on 
research into interaction of polymer matrices and 
fillers. The introduction of the latter (mainly 
inorganic) into the polymer matrix makes it possible 
for composites to demonstrate new, often unique 
properties, such as their hardness, high thermal 
stability, and mechanical properties. In addition, 
varying the content of the filler in the polymer matrix 
allows you to change both the processing parameters 
and the performance characteristics of the final 
material. The properties of composite materials are 
largely determined by the parameters of interfacial 
interaction. The formation of this layer makes it 
possible to obtain composites with target 
characteristics: increased rigidity, wear resistance, 
resistance to thermal oxidation, and a controlled level 
of thermal conductivity. Variation of the latter is 
required when creating a design with a heat sink in 
electronic technology for a satellite system, as well as 
in designs with shape memory, in which the effect 
that occurs is initiated by heating. 

However, polymer-based composites are limited 
by their low thermal conductivity, which for most 
polymers lies in the range of 0.05–0.35 W⋅(m·K)–1. 
The increase in the thermal conductivity of polymers 
increases due to the creation of heat-conducting 
structures based on fillers with high thermal 
conductivity, such as carbon nanotubes, graphene, 
graphite, boron nitride, aluminum nitride, aluminum 
oxide, silicon carbide, and others [1]. The addition of 
such fillers leads to the formation of continuous heat-

conducting chains in the polymer product. It is noted 
in [2] that at low filler concentrations, the increase in 
thermal conductivity has an almost linear dependence 
on the composition. 

Silicon carbide (SiC) is used to develop polymer 
composite materials operating at high temperatures, 
power, and high radiation conditions. It has 
semiconductor properties, chemical resistance and 
chemical inertness; therefore it has a wide range of 
applications: in mechanical engineering, metallurgy, 
nuclear, aerospace and chemical industries. However, 
the use of SiC as a modifying additive in polymer 
compositions is difficult due to insufficient chemical 
activity of its surface. This further leads to poor 
interaction of chemically inert SiC with the polymer 
and deterioration of the properties of the polymer 
composition, both at the manufacturing stage and 
during its operation. 

When filler is added to the polymer, the first 
interactions occur depending on the functionality of 
the surface of the filler particle, i.e. on the type of 
molecules on the surface of the particle. The viscosity 
of the polymer composite material is directly related 
to the interactions of the filler particles with each 
other, as well as the particles and the polymer matrix. 
Taking into account the thesis “structure determines 
properties” accepted in materials science,  
a significant contribution to the properties of  
a composite material is made by the type, surface and 
composition of particles. In addition, the modification 
of the filler makes it possible to improve the 
wettability between the polymer and the filler and 
influence its distribution in the polymer. It is known 
that a good contact of the filler with the polymer 
always improves the properties of the resulting 
product [3–5]. The addition of even a small amount 
of SiC to polyimide compositions significantly 
increases its thermal stability, so when 0.5–2.0 % SiC 
is introduced into the polymer, the onset point of 
decomposition in TGA analysis shifts from 200 to 
540 °C [5]. 

Previously, we used the plasma-chemical 
method of modifying SiC [6], which made it possible 
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to obtain a carbon shell decorated with silicon 
nanoparticles and nanowhiskers. At present, in order 
to increase the activity of the SiC surface, it is also 
modified by other methods: thermal oxidation [7–15] 
or chemical oxidation, grafting of monomers, 
oligomers, and polymers [16–18]. In [19–21], 
bifunctional compounds were used to improve the 
bond with the polymer, whose surface was modified 
with silanes. Silanization is required for the formation 
of a self-assembled monolayer (SAM), which was 
first described by Jacob Sagiv [22]. Since one of the 
requirements for successful silanization is activation 
of the substrate by producing a hydroxyl surface, 
silanization reactions have traditionally been applied 
to materials such as glass or metal oxides that can be 
easily hydroxylated. 

The following temperature zones of heat 
treatment are distinguished: 

–  up to 1000 °C, passive oxidation occurs with 
carbon burnout from the SiC surface and coating with 
a quartz film; 

–  above 1000 °C, re-deposition of the quartz 
film occurs on the SiC surface caused by the 
formation of silicon monoxide at high temperature 
(due to this, both open and closed porosity increases). 

Modifications include surface oxidation with 
nitrogen oxides [22] or Piranha solution [24–28]. 

Having treated the surface of inorganic particles, 
silane remains on the surface both chemisorbed and 
physisorbed. The chemisorbed silane is chemically 
bonded to the inorganic surface, while the 
physisorbed silane is bonded to the surface by van der 
Waals forces. In composites, both types of force 
exhibit different beneficial effects [29]. 

Physisorbed silanes that have diffused into the 
polymer matrix reduce water absorption and improve 
the mechanical strength of the composite, while 
chemisorbed silanes improve interfacial adhesion. 
These effects are better manifested when using 
compositions having related groups with a “tail” part 
of the silane as a polymer matrix. When modifying 
fillers with silanes with a “tail” amino group, it is 
efficient to use polyimides capable of entering into a 
chemical reaction with terminal anhydride groups.  
To obtain PCM based on polyimides, it is possible to 
use polyamic acids in a solvent with a low viscosity, 
which makes it easy to introduce fillers with 
subsequent polymerization of polyamic acids into 
polyimide. PCMs based on polyimides are thermally 
stable, while the appliction of heat-conducting filler 
improves their thermal stability [29]. 

Thus, despite the interest of researchers in the 
field of treatment of SiC with silanizing agents to 

create reactive groups on the surface, there is little 
information in the literature about methods for 
modifying SiC. There is also no information on the 
amount of silane present on the surface of the filler. 
Therefore, in the article, a modification technology 
with a controlled content of silanes on the SiC surface 
was developed. 
 

2.  Materials and Methods 
 

2.1. Materials 
 

The object of the study was SiC (fraction  
F-1200) with a grain size of 5 μm. As a modifying 
agent (silane) was used 3-aminopropyltriethoxysilane 
(APTES). For the oxidation of SiC after calcination, 
H2SO4 (chemically pure) and H2O (36 %) were used. 
Polyamic acid (PAA) (polyimide lacquer AD-9103 
IS) was used as a polymer in the creation of samples 
of polymer composite materials, designed to obtain 
film materials. 
 

2.2. Modification  
of SiC surface using APTES 

 
The modification of SiC is reduced to the 

formation of organic molecules on its surface. Such 
molecules have specific head and end groups for 
specific chemical bonding to the polymer. In the 
presented paper, the SiC modification technology was 
carried out in 3 steps (Fig. 1). 

Stage 1: SiC surface oxidation. The sample was 
calcined at 1100 °C for 3 hours – under these 
conditions, a SiO2 surface layer is formed. The 
presence of this surface layer is necessary for further 
modification; it was also noted in [18, 30] that such 
treatment improves adhesion. In addition, a range of 
chemical treatments are available for the controlled 
modification of oxide surfaces to provide specific 
functionality. 

Stage 2: modification of the SiO2 layer was 
carried out by chemical etching with a Piranha 
solution (H2SO4/H2O2 in a ratio of 1 : 5), resulting in 
saturation with —OH groups. 

Stage 3: silanization was carried out with 
APTES, due to which the polymer/filler interfacial 
interaction was formed. Successful silanization 
proceeds most efficiently in polar solvents; therefore, 
we used dimethylformamide (DMF) to separate the 
—OC2H5 group from APTES. The treatment of SiC 
with silane itself was carried out in an ultrasonic bath 
at 60 °C. 
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3. Results and Discussion 
 

3.1. Change in the reactivity of the SiC surface upon 
modification by FT-IR spectroscopy 

 
The SiC reactivity was determined from the 

functional groups that are formed on the surface of 
SiC during its modification using FT-IR 
spectroscopy. Four samples were obtained at different 
stages of SiC modification: initial (SiC); after 
calcination (SiCt); after calcination and treatment 
with a Piranha solution (SiCk); after calcination and 
treatment with Piranha solution and APTES (SiCа). 

The analysis of the functional groups formed on 
the surface of SiC samples at all stages of its 
modification is shown in Fig. 2. 

Identification of the samples showed that the 
original SiC had Si—C peaks, while other peaks were 
not observed. The —OH and Si—O peaks appeared 
in the SiCt sample. In the graph of Fig. 2, the Si—O 
peaks are presented in the absorption bands 1080 and 
460 cm–1, and the —OH peaks are in the absorption 
bands from 3414 to 2849 cm–1. This indicates the 
presence of a SiO2 surface layer on the studied filler. 
After treatment with the Piranha solution, the 
intensity of the —OH peaks in the SiCk sample 
increased, which was evidenced by its saturation with 
the —OH groups of the SiC surface. After the  
3rd stage of modification, the SiCa sample developed 
intermolecular bonds —N—H (3438, 3049 and  
802 cm–1), —С—N (1521 cm–1) and —C—H  
(1419 cm–1). This indicates the appearance of APTES 
on the SiC surface. 

 

 
 

Fig. 2. IR spectra of SiC, SiCt, SiCk, SiCa,  
APTES samples 

3.2. Study of chemisorptions at different stages  
of SiC modification 

 
A study of the adsorption kinetics has shown 

that the APTES content on the SiC surface increases 
with staged modification. However, the content of 
APTES can be varied at different stages of 
modification. We have studied the influence  
of factors on the APTES content on the SiC surface at 
various stages of modification: 

–  at stage 2, we varied the time of treatment 
with the Piranha solution; 

–  at stage 3, we varied APTES processing time; 
–  the temperature of the first stage was constant. 
The SiCt sample at the 2nd stage was treated with 

the Piranha solution for 1, 2, and 3 hours. It is shown 
that the time of exposure to the Piranha solution has a 
positive effect on the amount of APTES attached on 
the SiCk surface: an increase of 56 % was found  
at 3 h compared to 1 h (Fig. 3). 

The APTES content on the SiCk surface was 
varied (stage 3) in the following time intervals: 1, 2, 
5, 10, 30, 60, 120, and 240 minutes. The graphs in 
Fig. 3 show the kinetics of APTES adsorption on the 
activated SiCk surface. 

A study of the kinetics of adsorption on the 
activated SiC surface showed that the maximum 
APTES content on the SiC surface is reached at 60 
minutes. The duration of treatment with the Piranha 
solution saturates the surface with SiCt—OH groups 
and increases the APTES content on the SiCt surface 
from 2.1 % (1 h) to 3.7 % (3 h). 
 
3.3. Change in bulk density under SiC modification 

 

As a result of the modification, a decrease in the 
bulk density of SiC by 25 % is observed compared to 
the original sample (Fig. 4). Most likely, this is due to 
the presence of functional groups on the surface of 
 

 
 

Fig. 3. Graph of APTES content on the SiCk surface 
versus exposure time: 1, 2, 3 – respectively 1, 2, 3 hour 
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Fig. 4. Change in SiC bulk density  
after modification 

 
SiC particles, which increase the specific surface 
area. The change in bulk density indicates that the 
distance between the SiC surface particles increased 
after the modification. 
 
 

3.4. Assessment of modification efficiency  
of when forming interphase interaction 

 

To form bonds with the polymer, a silane is 
used, which creates active functional groups on the 
SiC surface, and they are the first to interact.  
The viscosity of a polymer composite material 
depends on the nature of the interaction between the 
filler and the polymer and makes it possible to 
estimate the strength of the interfacial interaction.  
In this paper, the effectiveness of the proposed 
method for modifying the filler was evaluated by 
introducing it into the polymer and creating a 
polyimide-based PCM. The concentration of SiC 
after various stages of processing in PCM samples 
was 5 %. At the same time, according to the 
developed method, the amount of APTES on the SiC 
surface varied depending on the parameters: the time 
of treatment with the Piranha solution and the time of 
treatment of APTES. The viscosity of PAA filled 
with SiCk during treatment with Piranha solution for 
3 hours is higher compared to 1 hour and 2 hours 
(Fig. 5), which can be explained by the formation  
of a larger number of filler bonds with the polymer. 

With the phased modification of SiC, an increase 
in the viscosity of the polymer composite was 
observed, which was probably due to an increase in 
the number of functional groups on the surface of the 
filler particles, which can participate in the 
interaction with the polymer matrix (Fig. 6). 

The effect of the duration of treatment with the 
Piranha solution on the level of APTES adsorption 
was estimated from the change in viscosity, which is  

 
 

Fig. 5.Viscosity of PAА filled with SiCk depending  
on the treatment time with Piranha solution 

 

 
 

Fig. 6.РАА viscosity filled with SiC depending  
on its modification stages 

 

 
 

Fig. 7. Viscosity versus APTES content  
on the SiCk surface: 

1, 2, 3 – respectively 1, 2, 3 hour 
 

shown in Fig. 7. The duration of treatment with the 
Piranha solution led to an increase in the APTES 
content, which demonstrates an increase in the 
interfacial interaction between РАА and APTES on 
the SiCk surface. 
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4. Conclusion 
 

A modification technology for the SiC surface to 
increase its reactivity has been proposed. The process 
parameters are determined by which it is possible to 
vary the content of APTES on the surface of SiC, 
thus changing its activity: the duration of treatment 
with acid and APTES. The content of APTES on the 
SiC surface at different stages of modification was 
established, and its highest value was recorded for the 
sample after the last stage of SiC modification 
(3.7 %). Studies have shown that the SiC sample 
demonstrates the highest reactivity after the third 
stage of surface modification (SiCa), since APTES 
attached to the SiC surface, as evidenced by the 
analysis of the IR spectra. Thus, the SiCa sample is 
the most promising for the creation of polymer 
composite materials. 

The pattern of surface modification depending 
on the duration of treatment with the Piranha solution 
has been established. It saturates the surface with 
SiCt—OH groups and increases the APTES content 
on the surface from 2.1 % (at 1 h) to 3.7 % (3 h).  
As a result of the modification, a decrease in the bulk 
density of SiC by 25 % is observed compared to the 
original sample. The change was due to the fact that 
after modification, APTES was added to the surface 
and a more branched surface was formed due to 
functional groups. Regularity in the change in the 
polymer composite viscosity depending on the SiC 
modification stages has been revealed. An increase in 
the viscosity of the polymer composite was found 
depending on the time of treatment with APTES, 
which can be explained by an increase in the 
interfacial interaction between the polymer and 
APTES on the SiCk surface. 
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