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Abstract: The development of metamaterials of various types (electromagnetic, acoustic, mechanical) is characterized by 
a single approach – the response of the medium to external influences required for solving a specific problem  
is “designed” by using a system of elements organized in a certain way, made from ordinary, well-known materials.  
This approach is universal and allows successfully solving a wide range of problems in various fields of science and 
technology. It is used in wildlife to create materials that provide optimal adaptation of a living organism. Rationally 
designed mechanical metamaterials have a number of unusual properties. In particular, they can meet conflicting 
requirements by combining, for example, high rigidity with high fracture toughness and low density. This makes them 
extremely promising for the development of new structural materials based on them. It is concluded that additive 
technologies can be successfully used to create mechanical metamaterials with ultra-properties – ultralight and superrigid. 
The principles of creating auxetic metamaterials based on open-cell foams are described in detail. 
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Аннотация: Показано, что разработка метаматериалов различного типа (электромагнитных, акустических, 
механических) характеризуется единым подходом. Требуемый для решения конкретной задачи отклик среды на 
внешнее воздействие «конструируется» путем использования системы, определенным образом организованных 
элементов, изготовленных из обычных хорошо известных материалов. Данный подход является универсальным и 
позволяет успешно решать широкий круг задач в различных областях науки и техники. Его использовала живая 
природа при создании материалов, обеспечивающих оптимальное приспособление живого организма. Показано, 
что рационально спроектированные механические метаматериалы обладают рядом необычных свойств.  
В частности, они могут удовлетворять противоречивым требованиям, сочетая, например, высокую жесткость  
с высокой вязкостью разрушения и малой плотностью. Это делает их крайне перспективными для разработки на 
их основе новых конструкционных материалов. Сделан вывод о том, что аддитивные технологии могут быть 
успешно использованы для создания механических метаматериалов с ультрасвойствами сверхлегких и 
сверхжестких. Подробно описаны принципы создания ауксетических метаматериалов на основе пенопластов  
с открытыми порами. 
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1.  Introduction 
 

Currently, we are witnessing the birth of a new 
concept in materials science – mechanical 
metamaterials. A rationally designed structure 
(architecture) makes it possible to implement 
previously unattainable and unusual properties that 
can be used to create materials with new unique 
characteristics. This approach is especially relevant in 
connection with the rapid development of additive 
technologies, which are an almost ideal tool for 
solving this problem [1–6]. 

The paper aims to briefly review the 
achievements in the field of mechanical 
metamaterials, in terms of the possible application of 
this concept to solve problems of modern materials 
science. 

The study was carried out within the framework 
of the “Strategic directions for the development of 
materials and technologies for their processing for the 
period up to 2030” [7]. 

First, it is expedient to formulate a general 
concept that underlies the creation of all currently 
known metamaterials. 

The refraction of an electromagnetic wave at the 
air/medium interface with simultaneously negative 
values of the dielectric and magnetic permeability 
(natural media with this property has not been found) 
was described by the Soviet, Russian physicist V.G. 
Veselago back in 1967 [8]. It was shown that, in this 
case, the refracted beam lies on the same side of the 
normal as the incident beam (Fig. 1), in addition, the 
phase and group velocities of such waves are directed 

in different directions. To assess how unusual this 
behavior is for a wave, one can follow the link in [9] 
to watching the video. 

To produce a wave with “negative” refraction, it 
is necessary that the direction of movement of 
electrons in the material medium be opposite to the 
forces causing this movement [10.] 

The solution to this paradoxical problem was 
found by D. Pendry, who used a periodic structure of 
metal wires and plates on which nested copper rings 
with discontinuities directed in different directions 
were printed [11]. Free electrons in a system of such 
circuits oscillated with their own (resonant) 
frequency, which depended on the geometrical 
parameters of the structure. In the case when the 
frequency of the incident wave was less than the 
resonant frequency, the direction of electron motion 
coincided in phase with the driving oscillations of the 
electric and magnetic fields. As the frequency 
increased, a moment came when the oscillations of 
the electrons and the driving fields occurred in 
antiphase, i.e. the dielectric and magnetic 
permeability of the structure of the contours in a 
fairly narrow frequency range became negative. 
Later, such a structure was created in 2000 by the 
authors of [12]. 

Figure 2 shows one of the possible 
implementations of an electromagnetic metamaterial 
created by Russian scientists at ITPE RAS. The 
measurements showed that the real parts of the 
dielectric and magnetic permeability take negative 
values in the range of 3.8–3.2 GHz [13]. 

 

 
 

(a)                                                                   (b) 
 

Fig. 1. The path of the refracted beam in an ordinary medium (a)  
and in an electromagnetic metamaterial (b) with a negative refractive index [10] 
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This effect can be avoided if the ribs are allowed 
to bend reversibly inside the cube (Fig. 4b). In this 
case, the application of compressive stresses leads to 
a decrease in the material volume, i.e. Poisson's ratio 
becomes negative. 

To achieve such a response to compressive 
stresses, the authors of [27–28] heated open-cell 
thermoplastic foam to just above the glass transition 
temperature, and then subjected it to volumetric 
compression followed by cooling in the mold. During 
the process, the walls of the foam cells were bent into 
these cells. 

Figure 5 shows a typical compression diagram of 
the original and modified foams. As can be seen from 
the presented graph, the modified foam remains 
stable at deformations up to 40 %, while the original 
material loses its stability at deformations less than 
10 %. 

Figure 6 shows micrographs of the original (a) 
and modified foams (b). 

When modifying the foam, the same principle 
was used that was used in the development of 
electromagnetic metamaterials. The material response 
required to solve the problem (foam compaction 
under compressive stresses without damaging the 
ribs) was “designed” by changing the geometry 
(physical modification) of already existing cells by 
bending their ribs into the elementary cell. 

The modified silicone foams had a Poisson's 
ratio of –0.09÷ –0.2 depending on the direction of the 
loading axis (factor of the initial material + 0.5),  
a lower modulus of elasticity of 11.8 MPa | 
(in the initial state 26 MPa) and a higher density  
of 30 kg⋅m–3 (in the initial state 15 kg⋅m–3). 
 

 
 

Fig. 5. Load-strain diagram for the original 1  
and modified polyurethane foam 2 [26] 

 
An extremely attractive feature of auxetic foams 

is their high ability to dissipate the energy of an 
external action. According to the results obtained by 
the authors of [29], copper foam modified by all-
round compression absorbs 13 times more energy 
than the original foam with the same density. 

In addition to foams, porous 
polytetrafluoroethylene [30], ultrahigh molecular 
weight polyethylene [31], and polypropylene [32] can 
be used as starting materials for the production of 
polymeric auxetics. The microstructure of such 
materials consists of quasi-spherical particles 
connected by fibrils. During the preparation process 
(orientation step), the particles adhere closely to each 
other. When fibers made from such a material 
expand, the particles reorient themselves, resulting in 
an increase in fiber diameter. 

One of the models of the mechanism of the 
auxetic behavior of materials is the joint deformation 
of elements of the “bow-tie” type (Fig. 7) [33]. 

 

 
 

                                                                  (а)                                                            (b) 
 

Fig. 6. Microstructure of the original and modified polyester-based foams [26] 
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Fig. 7. Model of the mechanism of auxetic behavior  

of structures from “bow-tie” type elements [33] 
 

As can be seen from the presented figure, when 
such a structure is stretched, the inward angle 
increases, which leads to an increase in the volume of 
the metamaterial. It was found that for hexagonal 
honeycombs of the “bow-tie” type, the minimum 
value of Poisson's ratio is –0.99 at an angle θ (Fig. 7) 
equal to 14.5° and a cell rib length ratio of 0.5 [34]. 

Based on the development of such models, an 
alternative approach to the creation of auxetic 
materials is currently being actively developed, which 
is inextricably linked with the development of 
additive technologies [35, 36]. 

Thus, the authors of [37] synthesized 3D 
auxetics using the methods of additive technologies 
(layer-by-layer melting of a metal powder by an 
electron beam) (Fig. 8).  

 

 
 

Fig. 8.  3D auxetic synthesized  
using additive technologies [37] 

The study showed that the compressive strength 
of auxetic structures at the same density increases 
with decreasing Poisson’s ratio. 

A similar material can be obtained using the 
laser lithography method [38]. The fabricated sample 
showed the lowest known Poisson’s ratio of –1.18. 

The main disadvantage of the described 
structures is the limited range of deformations in 
which these structures exhibit auxetic properties, 
which is associated with the rigidity of the joints and 
cell edges. To solve this problem, the authors of the 
work used printing using two materials, which 
provided structures with soft joints and hard ribs [39]. 

Auxetic materials can be used to create “soft” 
actuators for robotics [40], biomedicine [41], flexible 
electronics [42], and acoustics [43]. It is likely that the 
rapid development of additive technologies will make 
it possible to produce more advanced auxetic materials 
with a given level of properties. Auxetic materials will 
undoubtedly find wide application in the field of 
automobile and aviation due to their unique vibration-
proof properties [44, 45]. Extremely attractive is the 
high fracture resistance of auxetics [46]. 

An ideal structural material should have high 
stiffness and tensile strength characteristics, high 
resistance to impact loads and, at the same time, have 
a low mass. It should be noted that a number of these 
requirements contradict each other [47]. 

It is known that the ratio of module for a solid 
and porous isotropic material is expressed by the 
formula sEE / ~ ( )nsρρ / , where E and ρ are the 
modulus and material density, the indexݏ denotes a 
porous material, and ݊exponent varies from 2 to 3 
[48]. It is clear that reducing the value of n to 1 will 
increase the weight efficiency of the use of structural 
material. 

To solve this problem, it is necessary to create a 
structure of elements that allows [49]: 

–  localizing the material along the lines of 
principal stresses (elementary cell edges are the main 
bearing elements); 

–  converting the bending deformations of the 
ribs into compressive tensile deformations due to the 
design of the elementary cell. 

The task of creating such materials at the macro 
level has long been solved. Suffice it to recall the 
openwork arches of railway bridges and the graceful 
ligature of the Shukhov tower. The modern 
development of additive technologies allows us to apply 
the same approach, but already at the micro level. 

The authors of [48] proposed to use such a 
material in the form of a structure of elements, each 
of which is an icosahedrons surrounded by eight 
tetrahedral Fig. 9a–c. 
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Fig. 9. Diagram for lattice creation and their micrographs [48] 
 

Initially, the lattice was made by layer-by-layer 
polymerization of a UV-curable polymer. Next, a 
nickel layer was deposited on the prepared template 
by electrochemical deposition. To obtain ceramic 
superlattices from aluminum oxide, the method of 
atomic layer deposition was used [50, 51]. 
Subsequently, the polymer matrix was removed 
during heat treatment, while the lattice edges were 
hollow tubes with a wall thickness of 40 nm.  
The final density of the obtained materials ranged 
from 1 to 10 kg⋅m–3. The results obtained by the 
authors are shown in Fig. 10.  

As can be seen from the data presented, for the 
lattices with a predominance of tension under 

mechanical load, the exponent n is 1.1, which is close 
to the theoretical limit. For a lattice dominated by 
bending, the exponent n is 2.2. 

It is noteworthy that the dependence of the 
relative strength on the relative density during 
uniaxial compression of hollow lattices deviates from 
the linear law. In addition, the relative strain for 
lattices of this type ranges from 8 to 20 %, which 
turns out to be significantly higher than for gratings 
with solid ribs. This is probably due to a decrease in 
the size of microcracks at a nanometer thickness of 
the rib wall [52]. 

Thus, the use of a system of elements organized 
in a certain way, made of conventional materials to 

(a) (b) (c) 

(d) 

(f) (g) (h) (i) 

(e)
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                                              (a)                                                                                      (b) 
 

Fig. 10. Dependence of the relative stiffness (a) and strength (b) of microlattices under uniaxial compression  
on the relative density of the material [48] 

 

 
 

Fig. 11. Structure of natural mother-of-pearl [54] 
 

“design” its required response to external influences, 
is an extremely promising approach for the 
development of new materials. 

In a number of cases, it is precisely this path that 
evolution in wildlife chooses to create materials that 
ensure the survival of the organism. One of the 
classic examples of this approach is the structure of 
the mollusks shell [53]. In the three-dimensional 
structure of mother-of-pearl, plates of solid calcium 
carbonate are connected by a “soft” layer of proteins 
and polysaccharides (Fig. 11).  

When a crack occurs and propagates, the plates 
(Fig. 11) can slide relative to each other, providing 
not only a high level of energy dissipation, but also 
the occurrence of stresses that tighten the crack 
mouth [54]. 

 
3.  Conclusion 

 

Based on the data presented, it can be concluded 
that the development of metamaterials of various 
types (electromagnetic, acoustic, mechanical) is 
characterized by a single approach - an “unusual” 
response of the environment to external influences, 
which determines the unusual properties of 
metamaterials, is created by using a system of 
elements organized in a certain way made from 
common, well-known materials. In fact, the 

development of metamaterials represents a new 
approach in materials science, when the structure and 
properties of a material are determined not by 
chemical, physical, thermodynamic properties of 
atoms, but by the task being solved and controlled by 
a person. It was this approach that evolution used to 
create materials that ensure the optimal adaptation of 
a living organism. 

Additive technologies are an optimal tool for 
implementing this approach. It should be expected 
that their rapid development will lead to the creation 
of new metamaterials with unique properties that will 
largely determine the technological image of the 21st 
century. 
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