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Abstract: The modification of the silicone compound with carbon nanotubes (CNTs) resulted in composites with 
improved physical properties and thermal stability. The carbon nanotubes were functionalized with  
3-aminopropyltriethoxysilane for a more uniform distribution in the matrix. Initial and pre-oxidized CNTs containing 
different amounts of carboxyl groups were subjected to silanization. From 0.5 to 3 wt. % of the initial or functionalized 
CNTs were injected into Silagerm 2111 silicone compound. The obtained samples were characterized by FTIR and Raman 
spectroscopy and TG/DSC analysis. The silicon content in the silanized CNTs was determined by X-ray fluorescence 
spectroscopy. It was shown that the pre-oxidation of CNTs slightly affects the silicon content in the silanized nanotubes, 
which is up to (7.69 ± 0.92) wt. %. According to Raman mapping of the surface of silicone composites, the silanized CNTs 
are more uniformly distributed in the surface layer of the material than the original nanotubes. This effect has a positive 
effect on the physical-mechanical properties of the composites. CNTs functionalized by 3-aminopropyltriethoxysilane are 
1.5 times more effective in increasing the electrical conductivity than the original CNTs. The resulting composites retain 
their mechanical characteristics after thermal exposure and can be operated over a wider temperature range than the 
original silicone compound. 
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Аннотация: В результате модифицирования силиконового компаунда углеродными нанотрубками (УНТ) 
получены композиты с улучшенными физическими свойствами и термической стабильностью. Для более 
равномерного распределения в матрице углеродные нанотрубки подвергались функционализации  
3-аминопропилтриэтоксисиланом. Силанизации подвергались исходные и предварительно окисленные УНТ, 
содержащие различное количество карбоксильных групп. От 0,5 до 3 масс. % исходных или функцио-
нализированных УНТ вводили в силиконовый компаунд марки «Силагерм 2111». Полученные образцы 
охарактеризованы методами ИК-Фурье и КР-спектроскопии, ТГ/ДСК-анализа. Содержание кремния  
в силанизированных УНТ определялось методом рентгенофлуоресцентной спектроскопии. Показано, что 
предварительное окисление УНТ незначительно влияет на содержание кремния в силанизированных нанотрубках, 
которое составляет до (7,69 ± 0,92) масс. %. По данным рамановского картирования поверхности силиконовых 
композитов, силанизированные УНТ распределяются в поверхностном слое материала более равномерно, чем 
исходные нанотрубки. Функционализация способствует более равномерному распределению УНТ  
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в поверхностном слое материала. Данный эффект положительно сказывается на физико-механических свойствах 
композитов. Функционализированные 3-аминопропилтриэтоксисиланом УНТ в 1,5 раза более эффективно 
увеличивают электропроводность, чем исходные УНТ. Полученные композиты сохраняют механические 
характеристики после термического воздействия и могут эксплуатироваться в более широком интервале 
температур, чем исходный силиконовый компаунд.  
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1. Introduction 
 

One-dimensional carbon nanostructures are 
often used as fillers that impart strength [1], thermal 
stability [2, 3], thermal conductivity [4] and electrical 
conductivity [5] of polymer composites, which can 
subsequently be used in various fields of technology. 
The advantages of carbon nanotubes (CNTs) and 
nanofibers as a modifying additive are, in addition to 
outstanding characteristics, a low specific gravity [6], 
due to which structures made with their use are very 
light. 

The regularities of the formation of polymer 
nanocomposites based on CNTs have been studied in 
[7, 8]. It is noted that the strength properties of 
composites largely depend on the quality of the fiber-
matrix interface, which determines the efficiency of 
stress transfer between carbon nanotubes and the 
polymer matrix [9, 10], and also that the nonpolar and 
smooth surface of CNT graphene layers often cannot 
provide the required interfacial interactions with the 
polymer matrix [11]. In addition, CNTs, like other 
nanomaterials, are prone to aggregation in various 
media, which significantly reduces the efficiency of 
their use in composites [12]. 

Functionalization of the nanotube surface is 
most often used to enhance the interaction of CNTs 
with polymer matrices and facilitate the dispersion of 
nanotubes in the bulk of the material. In the works of 
scientists, numerous methods are presented for 
grafting functional groups to the surface of CNTs, for 
example, by means of plasma treatment [13], 
electrochemical methods, liquid-phase oxidation  
[14–17], and treatment in vapors of various 
substances [18]. In [19], the regularities of covalent 
functionalization of CNTs by oxygen-containing 
groups are presented and the behavior of oxidized 
nanotubes when combined with polysulfone and 
polyaniline is shown. The authors noted that oxidized 
CNTs are capable of electrostatic interaction with 
polymer macromolecules, which changes the 
structure of the polymer layer adjacent to the 
nanotube surface. 

In various studies, to modify silicone matrices, 
CNTs were preliminarily combined with 

molybdenum dioxide [20], carbon black [21, 22], 
graphene [23, 24], branched alumina [25], and 
titanium dioxide [26]. It was shown in [27] that the 
dispersibility of CNTs plays a decisive role in the 
thermal stability of CNT/silicone rubber composites. 
In addition, the material containing evenly distributed 
nanotubes retains elasticity after holding at 280 °C 
for 7 days. For deagglomeration of nanotubes, long-
term ultrasonic treatment in combination with jet 
milling was used in the study. 

In addition, oxidized CNTs [28] functionalized 
with polysiloxane [29], dopamine [30], and 
aminosilanes [31–33] were used in composites with 
silicone. 

The latter type of modifier is much better studied 
in the preparation of epoxy composites. It was shown 
in [20] that CNTs functionalized with 3-amino-
propyltrimethoxysilane improve the mechanical 
properties of the epoxy polymer to a greater extent 
than the original nanotubes. 

In [7], preoxidized CNTs were modified with  
3-aminopropyltriethoxysilane. It is shown that 
surface-modified CNTs caused an increase in the 
elastic modulus and tensile strength of nano-
composites by 18 and 15.8 %, respectively, better 
than oxidized CNTs. 

The efficiency of aminosilanes is explained by 
their ability to participate in the curing of the epoxy 
matrix (by amino groups), which promotes the 
formation of covalent bonds between functionalized 
CNTs and the epoxy network and improves the 
properties of the material [22–25]. The efficiency of 
silanized CNTs in silicone composites is due to the 
closeness of the chemical nature of the matrix and 
functional groups on the surface of nanotubes. 

This study aims to investigate the effect of CNTs 
functionalized with 3-aminopropyltriethoxysilane on 
the properties of the Silagerm-2111 silicone 
compound, as well as to establish the dependence of 
the effect of using silanized CNTs on the conditions 
of preliminary oxidation of nanotubes with nitric 
acid. 
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2.  Materials and Methods 
 

2.1. Characteristics of starting materials  
and reagents 

 

In this paper, we used Taunit-M carbon 
nanotubes manufactured by LLC Nanotechcenter 
(Tambov) with a diameter of 10–30 nm and a length 
of more than 3 μm, obtained by the CVD method 
from a propane-butane mixture at a Co/Mo/Mg 
catalyst./Al [34]. 

For the oxidation of CNTs, nitric acid of 
chemically pure grade was used. (Khimmed, Russia). 
For CNT silanizationwe used: 1) 3-aminopropyl-
triethoxysilane C9H20O5Si (98 % purity) provided by 
Nanjing Genesis Chemical Auxiliaries Co., Ltd. 
(Nanjing, China); 2) glacial acetic acid (Component-
Reaktiv LLC, Russia); 3) isopropyl alcohol of 
chemically pure grade (CJSC Laverna, Russia). 

Silicone compound Silagerm 2111 (Technology-
Plast Production Association, Russia) was used as  
a composite matrix. 

 
2.2. CNTs functionalization method 

 

A portion of carbon nanotubes weighing 0.5 g 
was dispersed in 95 mL of a solution of dilute acetic 
acid with pH = 5.2 for 10 min using an ultrasonic 
homogenizer. 3-aminoprolyltriethoxysilane was 
added to the resulting suspension. The mass ratio of 
CNTs/3-aminoprolyltriethoxysilane was 1:10.  
The resulting mixture was kept in a flask under reflux 
at 80 °C for 4 hours with constant stirring at a speed 
of 100 rpm. At the end of the process, the CNTs were 
washed with distilled water to neutral pH and then 
dried in a heating cabinet at 80 °С. 

In a number of cases, CNTs preliminarily 
oxidized with nitric acid were subjected to 
silanization. To do this, CNTs were boiled in 
concentrated nitric acid (1 g of CNTs per 50 mL of 
acid) in a flask under reflux for 2, 5, and 10 hours, 
after which they were washed on a filter with distilled 
water to neutral pH. The resulting aqueous paste was 
dried in a Scientz-10N Freeze Dryer (Scientz, China). 

 
2.3. Nanocomposite preparation method 

 

The original and silanized CNTs were 
introduced into the silicone compound so that the 
mass fraction of nanotubes in the composite was 0.5, 
1, or 3%. The resulting mixture was stirred for  
3 minutes at a stirrer speed of 250 rpm. Next, the 
suspension was subjected to evacuation. Vulcanization 
took place at room temperature for 24 hours. 

2.4. Characterization of CNTs samples  
and composites based on them 

 

The degree of functionalization of oxidized 
CNTs with carboxyl, lactone, and phenol groups was 
determined titrimetrically according to the Boehm 
method [35]. 

The silicon concentration in functionalized 
CNTs was determined by energy dispersive X-ray 
fluorescence analysis on an ARL QUANTX 
spectrometer (Thermo Fisher Scientific, Switzerland). 

The IR spectra of carbon nanotubes were 
recorded in the range from 500 to 4000 cm–1 with  
a resolution of 4 cm–1 on an FT/IR 6700 spectrometer 
(Jasco, Japan) equipped with an ATR attachment 
with a zinc selenide prism. 

The Raman spectra of the samples with  
a resolution of 5 cm–1 were obtained at an exciting 
laser wavelength of 532 nm on a DXR Raman 
Microscope (Thermo Scientific, USA). Raman maps 
of silicone nanocomposites with a step of 10 × 10 µm 
were recorded on the same device. The OMNIC™ 
Atlµs software was used to analyze Raman 
spectroscopy and Raman mapping data. 

The TG and DSC curves of the samples in air 
and argon were obtained on an STA 449 F3 Jupiter 
synchronous thermal analysis instrument 
(NETZSCH-Feinmahltechnik GmbH – Selb, 
Germany). The temperature program included 
holding at 30 °C for 10 minutes and heating from  
30 to 900 °C at a rate of 10 °C⋅min–1. 

The electrical resistance of silicone 
nanocomposites was measured using an E6-13A 
teraohmmeter (Punane RET, Estonia). Raman spectra 
were obtained on a DXR Raman Microscope 
(Thermo Fisher Scientific, USA) with an excitation 
laser wavelength of 532 nm. 

 
3. Results and Discussion 

 

3.1. Finding the parameters of oxidized  
and silanized CNTs 

 

According to the data of titrimetric analysis 
(Table 1), the composition of CNTs oxidized at 
various durations of treatment in HNO3 differs 
insignificantly. CNTs after 2 hours of treatment 
contain the maximum amount of phenolic groups, 
and CNTs after 10 hours of treatment are 
characterized by a higher content of carboxyl groups. 
The patterns of changes in the chemical composition 
of functional groups upon oxidation in HNO3 
generally correspond to the data presented in [36]. 
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Table 1. The content of acidic groups  
in oxidized CNTs 

 

Duration  
of oxidation, h 

Content of functional groups,  
mmol⋅g–1 

phenolic lactone – COOH 

2 0.3 0.3 0.5 

5 0.2 0.4 0.5 

10 0.2 0.4 0.6 

 
According to [37], phenolic groups play the 

greatest role in the functionalization of oxidized 
CNTs with aminosilanes. It is in their place that  
Si–O–C bonds are formed. It is also possible to form 
hydrogen bonds between the C=O groups and the 
hydrolyzed silane. 

According to the data of energy dispersive X-ray 
fluorescence analysis (Table 2), the content of silicon 
in samples of silanized CNTs differs insignificantly. 
However, oxidized CNTs interact with 3-amino-
propyltriethoxysilane somewhat more efficiently than 
the original ones. The CNTs subjected to silanization 
after 2-h oxidation of CNTs with nitric acid are 
characterized by the highest Si content. Recall that 
these CNTs contained more OH groups than other 
types of oxidized CNTs. 

Figure 1 shows typical IR spectra of the original, 
oxidized, and silanized CNTs. The original CNTs 
contain alkyl groups, which correspond to bands at 
2920 and 2850 cm–1 [38]. The broad band at about 
3450 cm–1 refers to the stretching vibrations of the 
O–H bonds of water molecules [39], which can be 
sorbed on the CNT surface. According to [40], the 
peaks near 1618 and 1385 cm–1 are due to vibrations 
of the C=C and C–H bonds. 

During oxidation, due to an increase in the 
hydrophilicity of the CNT surface, the intensity of the 
band at 3450 cm–1 increases. In addition, a low- 
intensity peak appears at 1740 cm–1 due to vibrations 
 

Table 2. Silicon content in samples  
of silanized CNTs according to energy dispersive  

X-ray fluorescence analysis 
 

CNT pre-treatment conditions Silicon content, wt. % 

Without pretreatment 6.26 ± 0.75 

2 hour oxidation 7.69± 0.92 

5 hour oxidation 6.64 ± 0.80 

10 hour oxidation 6.70 ± 0.80 

of C=O bonds in carboxyl groups, the number of 
which was previously analyzed based on titration 
data. According to [41], the peak at 1136 cm–1 in the 
spectrum of oxidized and silanized CNTs is due to 
vibrations of C–O bonds. 

In the IR spectrum of CNTs treated with  
3-aminopriyltriethoxysilane without preliminary 
oxidation, the band at 1385 cm–1 takes the form of a 
narrow peak, which, according to [40], can be 
explained by vibrations of C–H bonds in the alkyl 
groups of the modifying reagent. In addition, a group 
of peaks is found in the region of 880–1262 cm–1, 
which, according to [42], are characteristic of 
silanized CNTs. A more detailed explanation is given 
in [43], where it is shown that the peaks at 880, 950, 
and 1262 cm–1 are caused by vibrations of the  
Si–OH, Si–O–Si, Si–O–C, and Si–CH3 bonds.  
It should be noted that there is no peak at 1385 cm–1 
in the spectra of CNTs silanized after preliminary 
oxidation, which may indicate a different nature of 
the interaction of 3-aminopriyltriethoxysilane with 
the surface of oxidized CNTs. 

There is some difference in the IR spectra of 
CNT samples silanized before and after oxidation. In 
the case of pre-oxidized CNTs, the peak at 1384 cm–1 
is weak or absent, which can be explained by a 
change in the nature of the interaction between CNTs 
and aminosilane. In the case of unoxidized ones, a 
modifier layer is formed that does not form covalent 
bonds with the CNT surface. When oxidized CNTs 
are used, the OH groups of the hydrolyzed silane are 
involved in the formation of covalent and hydrogen 
bonds with the oxygen-containing groups of the 
nanotubes. 

The Raman spectra (Fig. 2) of various types of 
CNTs used in the work show characteristic peaks  
G (∼1570 cm–1), D (1350 cm–1), D + G (∼2920 cm–1) 
and 2D (2700 cm–1). According to [44], the G peak 
dominates in the spectra of highly crystalline 
graphite, while the D peak is due to the presence of 
amorphous carbon. The integral intensity ratio D/G  
is usually used to characterize the number of defects 
in carbon materials [45]. Peaks 2D and D + G are 
overtones of the main peaks. 

The results of processing the Raman spectra are 
presented in Table 3. Peak G in the Raman spectra of 
oxidized CNTs is shifted to higher wavenumbers 
compared to the same value for the original CNTs.  
In this case, the values of the D/G and 2D/G ratios for 
oxidized and silanized CNTs are practically the same 
as for the original CNTs. Consequently, functional 
groups are formed during oxidation at the site of 
defects in the original nanotubes, and new defects are 
formed to an extremely small extent. 
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Fig. 1. IR spectra of the original (1) oxidized with nitric acid for 2 hours (2),  
silanized without pre-oxidation (3) and after pre-oxidation for 2 (4) and 10 (5) hours 

 

 
 

Fig. 2. Raman scattering spectra of CNTs: original (1); silanized without preliminary preparation (2);  
oxidized for 2 (3), and 10 (4) hours; silanized after preliminary oxidation for 5 (5) hours 

 
In some cases, silanization contributes to an 

increase in the value of 2D/G due to the formation of 
a modifying layer of silanes or functional groups 
containing alkyl fragments. 

The data of TG/DSC analysis (Fig. 3) shows that 
the nature of the interaction between CNTs and  
3-aminopropyltriethoxysilane and the behavior of the 
modified form upon thermal treatment depend on the 

duration of the preliminary oxidation of CNTs.  
The behavior of the original CNTs (Fig. 3a, curves 1) 
is typical and was previously explained in detail in 
other papers [19]. 

Silanization in some cases contributes to an 
increase in the value of 2D/G due to the formation of 
a modifying layer of silanes or functional groups 
containing alkyl fragments. 
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Table 3. Results of processing of Raman spectra of original, oxidized and silanized CNTs 
 

Sample G Peak position, cm–1 D/G 2D/G 

Original CNTs 1584 0.85 1.69 

CNTs oxidized for 2 hours 1599 0.84 1.68 

CNTs oxidized for 5 hours 1592 0.85 1.69 

CNTs oxidized for 10 hours 1610 0.84 1.67 

CNTs silanized without pre-oxidation 1586 0.85 1.69 

CNTs silanized after oxidation for 2 hours 1593 0.85 1.69 

CNTs silanized after oxidation for 5 hours 1584 0.85 1.70 

CNTs silanized after oxidation for 10 hours 1593 0.85 1.69 

 

 
 

Fig. 3. TG and DSC-curves in air of original (a) and oxidized CNTs for 2 (b), 5 (c) and 10 (d) hours before (1)  
and after (2) silanization 

 
The data of TG/DSC analysis (Fig. 3) show that 

the nature of the interaction between CNTs and  
3-aminopropyltriethoxysilane and the behavior of the 
modified CNTs upon thermal treatment depend on 
the duration of the preliminary oxidation of CNTs. 
The behavior of the original CNTs (Fig. 3a, curves 1) 
is typical and was previously explained in detail in 
other studies [19]. 

The TG/DSC curves of the sample obtained by 
silanization of the original CNTs (Fig. 3a, curves 2) 

contain 2 separate regions corresponding to the 
decomposition of CNTs and 3-aminopropyl-
triethoxysilane. The silanized CNTs are noticeably 
more thermally stable than the original ones; 
however, it can be assumed that in this case the 
modifier (3-aminopropyltriethoxysilane) does not 
form covalent bonds with the nanotube surface, but 
non-covalent modification takes place. 

As a result of silanization of oxidized CNTs, we 
obtained materials whose intense thermal 
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decomposition begins 100–150 °C later than the 
corresponding nanotubes before modification  
(Fig. 3b–d). The change in the nature of the TG/DSC 
curves indicates a change in the nature of the 
interaction between CNTs and 3-aminopropyl-
triethoxysilane and the formation of chemical bonds 
between them. The best thermal stability is shown by 
the sample obtained by silanization of CNTs 
preliminarily oxidized for 5 hours. 
 

3.2. Investigation of the properties  
of silicone nanocomposites 

 

To find out the nature of the distribution of 
CNTs in the silicone matrix, Raman maps of 
nanocomposites were recorded (Fig. 4) and the 
intensity of the G-peak signal at different points of 
the surface was analyzed. 

There is no G-peak signal on the Raman map of 
the surface of the nanocomposite obtained by adding 

0.5 wt. % of the original CNTs to silicone (Fig. 4a). 
This indicates that the nanotubes are located in the 
bulk of the polymer matrix, at a considerable distance 
from the surface layer. 

Regions up to 20 × 20 µm in size with a high 
intensity of the G-peak signal are found on the 
Raman map of the sample obtained by introducing 
the same amount of silanized CNTs into silicone  
(Fig. 4b). This indicates the tendency of this type of 
CNT to be localized in the surface layer of the 
composite. 

A comparison of the Raman maps of samples 
containing 1 wt. % of the original (Fig. 4c) and 
silanized (Fig. 4d) CNTs shows that in the second 
case, the surface layer of the nanocomposite contains 
a larger amount of CNTs. As in the previous case, 
they form “islands” with transverse dimensions up to 
20 µm. 

 

 
 

Fig. 4. Raman maps of the surface of silicone nanocomposites containing 0.5 (a, b), 1 (c, d) and 3 (e, f) original (a, c, e) 
and silanized (b, d, f) CNTs and the G-peak signal intensity scale (g) 
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When comparing the composition of the surface 
of composites containing 3 wt. % of original (Fig. 4e) 
and silanized (Fig. 4f) CNTs, it can be concluded that 
the area of areas without CNTs in the second case is 
noticeably smaller. 

Thus, silanization contributes to a more uniform 
distribution of CNTs in the surface layer of silicone 
composites. 

Figure 5 shows the TG curves of the original 
silicone and nanocomposites containing 0.5–3 wt. % 
silanized CNTs. It should be noted that the original 
Silagerm 2111 silicone compound is quite thermally 
stable. Up to 300 °С, its weight remains unchanged, 
and intensive destruction begins after 400 °С.  
The introduction of silanized CNTs practically does 
not change the behavior of the material in the 
temperature range up to 300 °C, but makes it 
somewhat more stable at temperatures above 400 °C. 
It should also be noted that the original silicone after 
holding at a temperature of 300 °С for 3–4 hours, 
according to visual observations, loses its elasticity, 
becomes brittle, and crumbles, while the appearance 
and mechanical characteristics of the nanocomposites 
remain unchanged. A similar effect was previously 
described in [46]. 

Also, by the TG curves, one can notice a 
significant difference in the residual mass of the 
composites and the original silicone. Given that the 
composites contain no more than 3 wt. % CNTs, the 
residual mass of these materials should not differ 
from the corresponding parameter of the unmodified 
material by almost 20 wt. %. It can be assumed that 
the introduction of silanized CNTs form chemical 
bonds with the silicone matrix, contributing to the 
formation of a material with a much higher thermal 
stability in an inert atmosphere. 
 

 
 

Fig. 5. TG curves in argon of the original silicone (1)  
and nanocomposites containing 0.5 (2), 1 (3)  

and 3(4) wt. % silanized CNTs 

 
 

Fig. 6. Electrical resistance of nanocomposites containing 
original and silanized CNTs 

 
Figure 6 shows data on the electrical resistance 

of the obtained nanocomposites. All obtained 
materials are dielectrics. According to [47], to 
achieve the percolation threshold and a noticeable 
increase in the electrical conductivity, more than  
5 wt. % CNTs should be introduced into various 
polymer matrices. Possibly, in this case, too, a larger 
amount of conductive filler should have been 
introduced. We plan to obtain and study such 
nanocomposites in the future. However, a number of 
effects should also be noted here. 

Thus, due to the significant agglomeration of the 
original CNTs in the silicone matrix, an increase in 
their concentration, contrary to expectations, leads 
not to a decrease, but to an increase in the electrical 
resistance of the material. Nanocomposites 
containing silanized CNTs, in general, have a lower 
resistance value than materials of a similar 
composition with original CNTs. With an increase in 
the concentration of silanized CNTs, there is a trend 
towards an increase in the electrically conductive 
properties of the nanocomposite due to the saturation 
of its surface layer with a conductive component.  
As a result, the electrical resistance of the 
nanocomposite containing 3 wt. % silanized CNTs is 
1.5 times lower than that of the composite containing 
the same amount of original nanotubes. 

 
4. Conclusion 

 

The functionalization of the original and 
preliminarily oxidized carbon nanotubes with 
concentrated nitric acid for various times with  
3-aminopropyltriethoxysilane was carried out.  
It is shown that the content of silicon in 
functionalized samples weakly depends on the 
oxidation conditions; however, CNTs containing the 
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largest amount of phenolic groups are silanized more 
efficiently. The presence of silanol groups in the 
composition of modified CNTs is proved by IR 
spectroscopy data. According to TG/DSC analysis,  
3-aminopropyltriethoxysilane is not chemically 
bonded to the surface of unoxidized CNTs, while 
covalent bonds are formed with oxidized nanotubes. 
Raman mapping of the surface of silicone 
nanocomposites made it possible to establish that 
silanization contributes to a more uniform 
distribution of CNTs in the surface layer of the 
material. Introduction 0.5–3.0 wt. % silanized CNTs 
with silicone compound Silagerm 2111 contributed to 
an increase in its thermal stability and retention of the 
mechanical properties of the binder after exposure at 
a temperature of 300 °С. The resulting 
nanocomposites were dielectrics; however, 
composites containing 3 wt. % silanized CNTs had  
a 1.5 times higher electrical conductivity compared to 
composites containing a similar amount of original 
CNTs. The studies performed have shown the 
promise of using silanized CNTs as part of silicone 
nanocomposites in order to expand the operating 
temperature range, maintain mechanical properties 
after thermal exposure, and increase electrical 
conductivity. 
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