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Abstract: Field emission and structural characteristics of carbon nanotube fibers, polyacrylonitrile fibers, pyrolytic 
graphite and micrograined dense graphite were experimentally studied before and after their operation as a field emission 
cathode using registration of the current-voltage characteristics, optical microscopy, scanning electron microscopy and 
Raman spectroscopy in the spectral range from 1000 to 2000 cm–1. The experiments showed large and small structural 
rearrangements of carbon-containing cathodes and their surfaces in the process of field emission. In addition to lines of the 
Raman spectra with frequency maxima in the known ranges: G (1581–1599 cm–1), D (1363–1374 cm–1) and D' (1619–
1626 cm–1), characteristic of carbon materials, a line was detected in the range 1450–1480 cm–1, which is observed in the 
starting materials of pyrolytic graphite, carbon nanotube fibers and persists after operation, and also appears in a sample of 
micro-grained dense graphite after operation as a cathode. The relative integral intensity of line D in pyrolytic graphite, 
micrograined dense graphite, and carbon nanotube fibers undergoes the greatest change. In pyrolytic graphite and carbon 
nanotube fibers its increase is observed, and in micrograined dense graphite its decrease is observed after operation as a 
cathode. This made it possible to use the relative integral intensity of the D-line to quantify the change in the surface 
properties of carbon materials as a result of field emission when using these materials as cathodes, in particular to assess 
changes in crystallite sizes. Thus, the possibility of using Raman spectra to control the surface structure of carbon-
containing materials has been demonstrated, which significantly facilitates the possibility of further analysis of the 
relationship between the surface structure and its emission characteristics. The prospects for improving the field emission 
characteristics of carbon-containing cathodes were discussed. 
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Аннотация: Проведено сопоставление автоэмиссионных и структурных характеристик поверхностей ряда 
углеродсодержащих, в том числе и наноструктурированных материалов, перспективных для использования при 
создании автокатодов со стабильными эмиссионными характеристиками. Исследовались волокна из углеродных 
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нанотрубок (УНТ-волокно), полиакрилонитрильные волокна, образцы пиролитического графита и мелкозернистого 
плотного графита (МПГ-6). Структура поверхности образцов исследовалась до и после их работы в качестве 
автокатода с использованием оптической микроскопии, растровой электронной микроскопии и спектроскопии 
комбинационного рассеяния. Эти результаты сопоставлялись с вольтамперными характеристиками 
соответствующих катодов. Оптическая и электронная микроскопия показали наличие крупномасштабных,  
а анализ спектров комбинационного рассеяния (СКР) – мелкомасштабных структурных перестроек катода  
и поверхности его материалов в процессе автоэмиссии. В спектральном диапазоне от 1000 до 2000 см–1 в СКР 
кроме стандартно наблюдаемых характерных для углеродсодержащих материалов линий  с максимумами частот  
в диапазонах 1363…1374 см–1 (линия D), 1581…1599 см–1 (линия G), 1619…1626 см–1 (линия D') обнаружена 
линия в интервале 1450…1480 см–1  для пиролитического графита и УНТ-волокна – до и после эксплуатации,  
а для МПГ-6 – после эксплуатации этих материала в качестве автокатодов. Обсуждены изменения в СКР 
относительной интегральной интенсивности линии D, которая увеличивается для пиролитического графита  
и УНТ-волокна и уменьшается для МПГ-6 в процессе их эксплуатации в качестве автокатодов. Величина 
относительной интегральной интенсивности линии D использована для оценок размеров кристаллитов и их 
изменений в ходе автоэмиссии, что обосновывает возможность использования СКР для контроля структуры 
поверхности углеродсодержащих материалов и анализа связи структуры поверхности и ее эмиссионных 
характеристик. Обсуждены перспективы улучшения автоэмиссионных характеристик углеродсодержащих 
катодов. 
 
Ключевые слова: автоэмиссия; автоэмиссионный катод; ток автоэмиссии; вольтамперная характеристика; 
оптическая микроскопия; растровая (сканирующая) электронная микроскопия; спектры комбинационного 
рассеяния; углеродсодержащие материалы; наноструктурированные материалы; структура поверхности. 
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1. Introduction  
 

The development and utilization of novel 
electrovacuum devices that leverage the field 
emission effect, encompassing diverse radiation 
sources like UV lasers [1], IR, visible, and UV 
cathodoluminescent lamps [2], as well as low-power 
X-ray tubes [3] for a range of applications, such as 
disinfection or the production of efficient X-ray 
radiation sources for various needs, appear to be 
highly pertinent. Indeed, the exploration of carbon-
based (and nanostructured) materials for field 
emission cathodes is a promising area of research due 
to their unique electrophysical properties and 
potential applications in cathodoluminescent devices. 
In particular, the efficiency of the corresponding 
devices is greatly affected by the durability and 
stability of the emission characteristics of a number 
of carbon materials, which depend on the field 
emission modes that determine the structural changes 
of the emitting surface [4–6]. 

Since the type and parameters of nanostructures 
of the electron-emitting surface of carbon materials 
are crucial for their field emission characteristics, 
their evolution during field emission processes 
determines the dynamics of the field emission current 
change when a constant accelerating voltage is 
applied, and hence the stability of the operation of 
field emission devices based on carbon-containing 
materials. This makes it particularly relevant to study 
the surface changes of such materials during field 

emission and to identify the relationships between the 
surface structure and field emission characteristics of 
the corresponding carbon materials. 

It is well known that along with various types of 
optical and electron microscopy, Raman spectroscopy 
can provide valuable information on the fine structure 
of carbon materials surfaces [7–22]. 

It should again be emphasised that the durability 
and stability parameters of field emission cathodes 
directly determine the competitiveness of new 
electrovacuum devices using the field emission 
effect, in particular, for radiation sources in various 
spectral ranges.  

We have previously obtained expressions for the 
efficiency of the corresponding radiation sources of 
different types [2, 4, 5].  

For example, for sources of visible, X-ray and 
UV radiation, the following ratio for the efficiency is 
valid: 
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where Ef is the value of light radiation source 
efficiency equal to the ratio of useful effect (of light 
or energy flow) to total costs, including installation, 
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is the sum of installation and disposal costs applied to 
one moment of time; S is the light flow in lumens (for 
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visible light sources) or energy in a given spectral 
range (for UV or X-ray sources); T is the continuous 
service life of the radiation source; e1P  is the cost per 
kWh of input energy in the absence of other operating 
costs; E  is the light output (for visible light sources) 
or energy efficiency (for UV or X-ray sources); D is a 
discount factor reflecting the operating mode of the 
radiation source. 

Estimates show that to ensure the 
competitiveness of general-purpose field emission 
light sources, a period of continuous stable operation 
of the radiation source – T must be ensured in the 
order of several tens of thousands of hours 
(preferably 50,000 hours and more). 

This means that special attention should be paid 
to the issues of stable and long-term operation of field 
emission cathodes and identification of promising 
materials and modes of their operation. In particular, 
for carbon-containing materials of field emission 
cathodes, in the course of their operation during the 
emission of electrons, the structure of their surface 
and, together with it, the emission properties of the 
field emission cathode are changed and constantly 
renewed [2, 4–7]. 

This paper summarizes our results on the study 
of promising carbon-containing materials for field 
emission cathodes, including a comparative analysis 
of their field emission and structural characteristics, 
which can change during electron emission under 
different modes of field emission cathode operation.  

The objective of the work was to compare the 
evolution of surface and field emission characteristics 
during the long-term process of electron field 
emission for different materials, namely to compare 
the experimentally obtained field emission 
characteristics of field emission cathodes and 
structural characteristics of the cathode and its 
surface using optical, scanning electron microscopy 
and Raman spectroscopy before and after long-term 
operation of the material as an field emission cathode. 
In addition to the new experimental results, we also 
used previously obtained results already published  
in [4–7]. 

 
2. Materials and Methods 

 

2.1. Carbon materials for the field emission 
cathodes under study 

 

In this work, as well as in [4–7], we used such 
nanomaterials as CNT filaments (carbon nanotube 
fibers) (FGBNU “TISNUM”, Troitsk, Russia), with a 
diameter of about 30 μm, obtained by agglomeration 
of nanotubes; PAN-fibers (polyacrylonitrile fibers) 
(“Uglekhimvolokno”, Mytishchi, Russia), which is a 

bundle of 200–300 polyacrylonitrile filaments each 
with a diameter of about 6 μm; and massive carbon 
materials (JSC NIIgraphite, Moscow, Russia): MPG-
6 (high-strength fine-grained dense graphite) with  
a density of about 1.7 g⋅cm–3, and pyrolytic graphite 
with a density of about 2.2 g⋅cm–3. 

 
2.2. Determining field emission characteristics  

of cathodes 
 

The methods of preparation of cathodes from the 
investigated materials were described earlier [4–6]. 
The field emission characteristics were measured 
according to the two-electrode scheme in a vacuum 
chamber at a pressure of 10–6 Torr at a distance of  
1 cm between the cathode from the investigated 
material and the anode, which is an electrode with a 
cathodoluminophore with a diameter (6.5 cm) 
significantly exceeding the dimensions of the 
emitting surface of the cathode (for different 
materials – cathodes with characteristic linear 
dimensions of the emitting surface from 1 to 6 mm). 

When a positive voltage was applied to the 
anode, electrons were emitted from the cathode, and 
the current-voltage characteristics (CVC) and current-
time dependencies were measured for different 
carbon-containing material cathodes. 

 
2.3. Analysis of the structural characteristics  

of carbon-containing materials  
for field emission cathodes  

 
The structural characteristics of the surface of 

carbon-containing field emission cathode materials 
and their evolution during electron emission were 
investigated using optical, scanning electron 
microscopy (SEM) and Raman spectroscopy. 

Optical images of the surface of carbon-
containing field emission cathode materials were 
recorded using an “Olympus” microscope, which 
allows obtaining digital images with magnification in 
the range up to 100× times. The magnifications of 5×; 
10×; 20×; 50× and 100× times and the image sizes of 
the surface areas at the corresponding magnifications 
were used:  

5× times – 2.8 × 2.2 mm; 
10× times – 1.4 × 1.1 mm; 
20× times – 700 × 550 µm;  
50× times – 280 × 225 μm; 
100× times – 140 × 112 μm. 
Electron images of the microstructure of 

materials before and after their use as field emission 
cathodes were obtained at an accelerating voltage of 
30 kV using a JEOL JSM 7001F scanning electron 
microscope in the same way as previously in [4–6]. 
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The image field size of the scanning electron 
microscope using a focal length of 8 to 10 mm with 
sufficient image sharpness could vary in the range 
from 1 μm to several hundreds of μm. 

This study continues the work presented in [7], 
using the same technique of obtaining and analysing 
Raman spectra using a ZNL Integra Spectra Raman 
spectrometer. Processing of the obtained Raman 
spectra was carried out using the software Fityk [8], 
which made it possible to extract individual lines of 
the spectrum assuming that the shape of each line is 
described by a Lorentz function, and to determine the 
maximum frequency, width and relative integrated 
intensity of each line of the spectrum in the frequency 
range 1000–2000 cm–1. The characteristics of each 
line were determined at different background levels 
(at least three different levels), averaged with the 
estimation of maximum deviations from the mean 
values, which did not exceed 10 % for all 
experiments performed. 

In this work, we have analysed in detail the 
spectral range of Raman spectra in the frequency 
range 1000–2000 cm–1, which corresponds to the 
presence of the well-known G, D and D' lines [9, 10, 
13–17] characteristic of carbon materials. It is also 
known that certain changes in the graphite structure 
of such materials are also reflected in the Raman 
spectra at frequencies around 2700 cm–1 [11]. 
However, no significant influence of auto-electron 
emission on the Raman spectra was found for the 
examined samples in this range and, therefore, it was 
decided to analyse in detail the line parameters  
in the Raman spectra in the frequency range  
1000–2000 cm–1, where we observed changes in the 
Raman spectrum as a result of using the examined 
samples as auto-electron emitters. 

 
3. Results and Discussion 

 
3.1. Structural and field emission characteristics 

 of carbon-containing materials  
and cathodes made from them 

 

3.1.1. Characteristics of fine-grained dense graphite 
MFG-6 and pyrolytic graphite 

 

When recording the CVC of fine-grained dense 
graphite MPG-6 (curve 1 in Fig. 1) and pyrolytic 
graphite (curve 2 in Fig. 1), it was shown [6] that the 
threshold electric field strength of field emission for 
different samples of both types of materials is close  
in value in the range of 3600–3800 V⋅cm–1. At the 
same time, already at electric field strength of about 
4500 V⋅cm–1 the value of field emission current 
density per unit of the emitting surface of the cathode 

for pyrolytic graphite exceeds several times the value 
of field emission current density for fine-grained 
dense graphite MFG-6. Examples of CVCs for 
samples of field emission cathodes made of fine-
grained dense graphite MFG-6 and pyrolytic graphite 
with approximately the same areas of electron-
emitting surfaces were published earlier in [6]. 

For microscopic inspection and registration of 
Raman spectra for each of the materials several 
observation points were selected. An example of the 
choice of points for recording the RMS for different 
samples of fine-grained dense graphite MFG-6 is 
presented in Fig. 1. 

For microscopic inspection and recording of 
Raman spectra for each of the materials several 
observation points were selected. An example of the 
choice of points for recording the Raman spectra for 
different samples of fine-grained dense graphite 
MPG-6 is presented in Fig. 1. 

It should be noted that for different registration 
points for both MPG-6 and pyrolytic graphite 
samples, although there are some differences in the 
images (optical and electronic photographs) of the 
surface, but no pronounced structural rearrangements 
before and after the emission processes can be 
detected, while for Raman spectra such differences 
are undoubtedly observed, which may indicate some 
heterogeneity of the surface of the initial materials, 
and possible heterogeneity of the structures of the 
surfaces of the materials after their work as 
field emission cathodes. This may be caused not only 
by the initial differences, but also by possible 
differences (inhomogeneities) formed in the course of 
structural changes of the material surface in the 
process of electron field emission (differences in the 
dynamics of structural changes for different parts of 
the surface).  

 

  
Fig. 1. Different samples of MPG-6:  

on the left – sample used as an field emission cathode,  
on the right – unused as an field emission cathode 

1

2

3

4
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Figures 2 and 3 show photographs, and Figs. 4, 5 
show Raman spectra for different surface areas for 
fine-grained dense graphite MPG-6 (Figs. 2, 4) and 
pyrolytic graphite (Figs. 3, 5) before use as field 
emission cathodes and for samples of these materials 
already used as field emission cathodes. 

 

Images of the surfaces of fine-grained dense 
graphite and pyrolytic graphite (Fig. 6) obtained by 
scanning electron microscopy also showed no 
significant differences for the different recording points 
both before and after the use of these materials as field 
emission cathodes. A typical view of the surfaces of 
these materials is presented in Fig. 6 (see also [4–6]). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 2. Surface views at 50× magnification of different sections of MPG-6 samples before use  
as an field emission cathode (a) and after use as an field emission cathode (b, c, d). Surface image size 280 × 225 µm 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3. Surface view at 50× magnification of different sections of pyrolytic graphite samples before use  
as an field emission cathoede (a) and after use as an field emission cathode (b, c, d). Surface image size 280 × 225 µm 



 

J

2

o
p
c
v
T
w
f
f
c
A
C
e
p
n
a
i
w
s

Shesh

Journal of Ad

28

Fig. 4. Ra
em

3.1.2. Cha
an

The stru
of cathodes
polyacrylonit
current varia
voltages in a
The data ob
work show th
field emissio
fibers ranges
carbon nanot
At the same 
CVC with 
emission cu
polyacrylonit
nanotubes at 
about 1300–
increases com
within an h
subsequent h

hin E.P., Kund

dvanced Mate

aman spectra o
mission cathod

aracteristics 
nd carbon na

uctural and cu
s made of
trile fibers an
ation in tim
a two-electro
tained earlie
hat the thresh
on for sam
s from 1600
tube filamen
time, for ca
increasing 

urrent grow
trile fibers
a constant a

–1400 V⋅cm
mpared to the
hour and r
hours. In con

dikova N.D., K

erials and Tec

(a) 

(c) 
of different se

de (a, b) and af

of polyacryl
anotube filam

 

urrent-voltag
f nanocarb
nd the dynam

me at differ
ode circuit w
er [4–6] and
hold electric

mples from 
0 to 1850 V
nts from 500
arbon nanotu

accelerating
ws much f
. Moreove
accelerating 
m–1 the em
e initial valu
remains stab
ntrast, for ca

Kireev V.B., B

chnologies. 20

ctions of samp
fter use as an 

lonitrile fiber
ments 

ge characteri
bon fibers
mics of emis
rent accelera

were investiga
d refined in 
 field strengt
polyacryloni
V⋅cm–1, and
0 to 600 V⋅c
ube cathodes
g voltages, 
faster than 
er, for ca

field strengt
mission cur

ue by 2–2.5 t
ble for sev
athodes mad

Belov K. N., M

024. Vol. 9, N

 

 

ples of fine-gr
field emission

 
rs  

istics 
and 

ssion 
ating 
ated. 
this 

th of 
itrile 

d for 
cm–1. 
s the 

the 
for 

arbon 
th of 
rrent 
imes 
veral 
de of 

poly
volt
emi
imm
inte
with
the 
obta
such
poly
oper
resp

ima
poly
and 
elec
cath
obse
who
com

Many Fung Dyk

No. 1  

rained dense g
n cathode (c, d

yacrylonitrile
tages above 
ssion curre

mediately or
rval of abou
hin two to th
surfaces of t

ained by opti
h material
yacrylonitrile
ration as fie

pectively, in F
The analys

ages of c
yacrylonitrile
in this work

ctron field em
hodes made 
erved structu
ole (Figs. 7, 8

mbined from t

k, Berdnikov A

(b) 

(d) 
graphite MPG
d) at points 1 (

e fibers at
the thresho

ent over ti
r after som
ut an hour) 
hree subsequ
the correspo
ical microsco
ls as ca
e fibers b
eld emission
Figs. 7, 8. 
sis of optic
carbon na
e fibers cath
k show that 
mission durin

of these m
ural rearrang
8) and of ind
the data of ou

A.S., Prosekov

G-6 before use 
(a, c) and 3 (b

t different 
old values, a
ime is obs
e increase 
and relative
ent hours. Ph

onding electr
opy and Ram
arbon nan
before and 
n cathodes a

cally and S
anotube ca
hodes obtain
as a result o
ng prolonged

materials ther
gement of the
dividual fiber
ur publication

v D.N. 

 

as an field 
b, d) 

acceleratin
a drop in th
served eithe
(in the tim

e stabilisatio
hotographs o
rode material
man spectra o
notubes an

after the
are presented

SEM-recorde
athodes an
ned in [4–6

of long-lastin
d operation o
re is a wel
e cathode as 
rs (Figs. 9, 10
ns [4–6]). 

ng 
he 
er 

me 
on 
of 
ls 
of 
nd 
ir 
d, 

ed 
nd 
6] 
ng 
of 
l-
a 

0, 



 

Shesh

 
Fig. 5. R

 
 
 

hin E.P., Kund

Raman spectra

Fig. 6. Pho

dikova N.D., K

(a) 
 

(c) 

a of pyrolytic 
as an field 

(a) 

otos of cathod
 a

Kireev V.B., B

Jou

graphite samp
emission cath

de surfaces fro
and pyrolytic g

Belov K. N., M

urnal of Adva

 

 

ples before us
hode (c, d) at p

 

 
om arrays of fi
graphite (b) ob

Many Fung Dyk

anced Materia

e as an field e
points 1 (a, c) 

fine-grained de
btained by SE

k, Berdnikov A

als and Techn

(b) 

(d) 

emission catho
and 3 (b, d) 

(b) 

ense graphite 
EM 

A.S., Prosekov

nologies. 2024

ode (a, b) and 

MPG-6 (a) 

v D.N. 

4. Vol. 9, No.

2

 

 

after use  

1

29



 

J

3

F

S
p
p
c
t
t
t
f
t
c

n
t
s
d
f
l
a
f
n
c
i
t
a

Shesh

Journal of Ad

30

Fig. 7. Optica

 
The ima

SEM show th
polyacrylonit
prolonged op
cathodes at 
they are heat
to their stru
their field em
fully consiste
the field emi
cathodes mad

On the c
nanotube fila
time. This 
structure of 
destruction o
field emissio
large numbe
apparently fo
field emissio
nanotubes. T
cathode itsel
individual ca
the images o
and scanning

hin E.P., Kund

dvanced Mate

            

al microscopy 
of this fibers

ages obtained
hat as a resul
trile fibers
peration of th
sufficiently 

ted above th
uctural degra
mission prop
ent with the 
ission curren
de of this ma
contrary, for 
aments, emis

correlates 
f the field 
of carbon n

on of electron
r of new ef
ormed during
on cathode 
The change
f and the str

arbon nanotu
of Figures 8 
g electron mi

dikova N.D., K

erials and Tec

               (a) 

(c) 
(a and b) (20×

s before (a and
(The

d by optical 
lt of field em
s melt, b
hese fibers a

high accel
he melting po
adation and 
erties. These
above-descr

nt in time fo
aterial. 

the cathode 
ssion propert

well with 
emission c

nanotubes d
ns from this 
ffective emis
g disordered
and destruc

e in the str
ructural rearr
ube are very 

and 10, obt
croscopy. 

Kireev V.B., B

chnologies. 20

× magnificatio
d c) and after 
e size of the su

microscopy
mission proce
because du
as field emis
lerating volt
oint, which l
deterioratio

e conclusions
ribed change
or field emis

based on ca
ies improve 
the disord

athode and 
during long-

material, sin
ssion centers
d structure of
ction of ca
ructure and 
rangement o
well observe
tained by op

Belov K. N., M

024. Vol. 9, N

 
        

 

on) of a polya
(b and d) its u
urface section

y and 
esses 
uring 
ssion 
tages 
leads 
n of 
s are 
es of 
ssion 

arbon 
with 

dered 
the 

term 
nce a 
s are 
f the 

arbon 
the 

f the 
ed in 
ptical 

in 
rela
oper
cath
carb
num

char
part
cert
mad
such
pyro
of 
stren
curr
mad
poly
and 
six-

Many Fung Dyk

No. 1  

                     

acrylonitrile fi
use as an field
n is 700 × 550

3.2. Disc

The efficie
various el

ationship bet
rating mode

hodes, espec
bon-containin
merous public

A compa
racteristics 
ticular those 
tain inconsis
de from arr
h as fine-g
olytic graphi
emission cu
ngth that ens
rent) signific
de from 
yacrylonitrile
especially fo
fold differen

k, Berdnikov A

      (b) 

(d) 
bers cathode a

d emission cath
 μm) 

cussion of th
 

ency of using
ectronic de
tween field 
es and stab
cially those 
ng materials
cations, inclu
arison of 
of carbon-c
studied in t

stency. On 
rays of carb

grained dens
ite have a thr
urrent (the 
sures the occ
cantly highe
nanostructur
e fibers (abo
for carbon na
nce). 

A.S., Prosekov

 

and Raman sp
hode material 

he results ob

g field emiss
evices, and

emission ch
bility of fi
made of n

s, have been
uding [2–6, 2

the fiel
containing 
this work, de
the one ha

rbon-containi
se graphite 
reshold for th
minimum 

currence of f
er than that 
red fibers, 
ut a three-fo

anotube filam

v D.N. 

pectra (c and d
 

tained 

sion cathode
d hence th
haracteristic
eld emissio

nanostructure
n discussed i
23–30]. 
ld emissio
materials, i
emonstrates 
and, cathode
ing material
MPG-6 an

he occurrenc
electric fiel
field emissio

for cathode
such lik

old difference
ments (about 

d) 

es 
he 
s, 

on 
ed 
in 

on 
in 
a 

es 
ls 

nd 
ce 
ld 
on 
es 
ke 
e) 
a 



 

 

  

Shesh

Fig. 8. Op
for carbon n

 

Fig. 9. S

                     
Fig. 10

hin E.P., Kund

           

ptical microsco
nanotubes (CN

(a) 

EM images of

                      
. SEM images

dikova N.D., K

              (a) 

(c) 
opy (a and b) 
NT filaments)

(Th

 

f polyacryloni
the opera

                     
s of individua

Kireev V.B., B

Jou

(10× magnifi
) before (a and

he size of the s

itrile fibers be
ation of fibers

  (a) 
al carbon nano

as part of th

Belov K. N., M

urnal of Adva

 
       

 

ication) of car
d c), after (b a
surface section

(b) 
efore (a) and a

as part of the
 
 

 
      

otubes before (
he field emiss

Many Fung Dyk

anced Materia

                      

rbon nanotube
and d) their us
n is 1.4 × 1.1 m

 

after (b, c – at 
e field emissio

                 (b)
(a) and after (
sion cathode 

k, Berdnikov A

als and Techn

     (b) 

(d) 
e cathode and R
se as an field e
mm) 

different emi
on cathode 

) 
b) the operatio

A.S., Prosekov

nologies. 2024

Raman spectr
emission catho

(c) 

ssion process 

 

on of these na

v D.N. 

4. Vol. 9, No.

3

 

ra (c and d) 
ode material 

 

duration)  

anotubes  

1

31



 

Sheshin E.P., Kundikova N.D., Kireev V.B., Belov K. N., Many Fung Dyk, Berdnikov A.S., Prosekov D.N. 

Journal of Advanced Materials and Technologies. 2024. Vol. 9, No. 1  

32

Table 1. Raman spectra data for samples of carbon-containing field emission cathode materials  
in the range 1000–2000 cm–1 

 

Peak, cm-1 
Pyrographite PAN-fibers MPG-6 CNT-fibers 

before 
work 

after 
work 

before 
work 

after 
work 

before 
work 

after 
work 

before 
work 

after 
work 

D 1364.9 1366.8 1370.1 1373.2 1366.1 1366.8 1363.6 1367.6 

X 1458.1 1458.5 NA NA NA 1454.8 1476.2 1462.5 

G 1581.7 1584.7 1592.6 1599.0 1583.0 1583.5 1582.1 1586.4 

D' нет 1624.4 нет нет 1616.9 1625.3 1619.8 1621.1 
 

On the other hand, the field emission 
characteristics of massive cathodes made of carbon-
containing materials are much more stable in a wide 
range of accelerating field strengths, although the 
field emission current for carbon nanotube filaments 
can be increased by an order of magnitude in a much 
narrower range of accelerating electric field strengths 
than even for the best of field emission cathode 
massive materials – pyrolytic graphite. 

It should also be noted that although higher field 
emission current densities can be achieved for field 
emission cathodes made of nanostructured fibers, it is 
clear that at such current densities, macroscopic 
disturbances in the structure of both the nanofiber 
cathode itself and individual fibers occur.  

For polyacrylonitrile fibers, this is melting and 
degradation of their field emission properties.  
For individual carbon nanotubes, these are numerous 
breaks, which, within the interval of several hours of 
operation of the field emission cathode, not only do 
not deteriorate its initial field emission properties, but 
can even improve them. This, however, does not 
guarantee the stability of the field emission cathode 
for tens of thousands of hours required for the effective 
operation of many field emission devices [2, 3]. 

When analyzing the Raman spectra, which 
records summary is presented in Table 1, the main 
Raman scattering lines in the range 1000–2000 cm–1 
were considered. The maximum frequencies of the 
lines detected in the Raman spectra were obtained, as 
in our work [7], by averaging over all recording 
points of samples of the corresponding materials that 
were not used in the operation of field cathodes (in 
the table, the columns “before use”), and those used 
as field cathodes (in the table there are columns “after 
use”). In this work, with an increase in the number of 
samples and recording points in the studied samples 
in comparison with work [7], the characteristic values 
of the previously obtained frequencies of the maxima 
of the corresponding spectral lines were confirmed 
with an accuracy of 0.5 cm–1, which corresponds to 

the instrumental accuracy of the Raman spectrometer 
“Integra Spectrum” with a diffraction grating  
of 1800 lines⋅mm–1. 

According to the results presented in Table 1, 
along with the well-known G, D, and D' lines [9, 10] 
characteristic of carbon materials, the following has 
been observed: 

–  G line with a maximum in the range 1581–
1599 cm–1, due to vibrations of carbon atoms in 
strongly bonded hexagonal planes; 

–  D line with a maximum in the range 1363–
1374 cm–1, caused by violations of translational 
symmetry in the studied materials; 

–  D' line with a maximum in the range 1619–
1626 cm–1, caused by disorder effects between 
carbon layers; 
in the Raman spectra of samples of such materials as 
pyrographite, carbon nanotubes, and fine-grained 
dense graphite MPG-6, after use in an field emission 
cathode, a characteristic spectral line in the frequency 
range of 1450–1480 cm–1 was observed, labelled by 
us in the table, as well as in [7], the X-line. In [12], a 
similar line was observed in Raman spectra for 
samples of polyacrylonitrile fibers (unlike our data) 
and was associated with vibrations of the methylene 
group. 

The frequencies of the maxima of the 
corresponding spectral lines and their insignificant 
shifts as a result of using the materials as field 
emission cathodes were briefly discussed earlier [7].  

The most interesting observed effect from 
Raman spectroscopy data for the studied materials is 
the change in the relative integrated intensity of the D 
line with respect to the G line. In [9], the relative 
integrated intensity of the D line for fine-grained 
graphite is related to the size of its crystallites. The 
results of measuring the relative integral intensity of 
the D line before and after prolonged electron 
emission for all investigated samples of carbon-
containing materials tested as materials for field 
emission cathodes are presented in Fig. 11. 
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materials in the creation of new field emission 
devices and devices. 

Obtaining data on the field emission and 
structural characteristics of the surface of carbon-
containing materials for field emission cathodes 
creates good prerequisites for optimizing the 
operation of field emission cathodes created on the 
basis of various carbon-containing materials, in 
particular, the use of a three-electrode circuit allows 
for various materials to provide the necessary field 
emission current by appropriately changing the 
voltage and distance between the cathode and mesh. 
By changing the shape, size of the cathode area, and 
the mode of excitation of the emission current, it is 
possible to provide the necessary density of this 
current, which allows avoiding excessive overheating 
and the occurrence of unacceptable mechanical 
stresses leading to destruction of the structures of the 
cathode materials. 

 
4. Conclusion 

 

The results obtained indicate that for carbon-
containing materials, when used as field emission 
cathodes, both macroscopic and microscopic 
structural changes of the cathodes themselves and 
their surfaces occur, depending on the type of 
material and the mode of its operation. It is shown 
that measuring the relative integral intensity of the D 
line in Raman spectra makes it possible to evaluate 
the nature of the evolution of emission electron 
centers, and in some cases to estimate not only the 
sizes of carbon crystallites, but also the change in 
these sizes during the field emission process. It was 
found that for MPG-6 samples before and after using 
this material as the cathode of a field emission light 
source, the average crystallite size is different, and 
according to estimates, it is approximately 8 nm and 
10 nm, respectively. The results obtained justify the 
possibility of using optical and scanning electron 
microscopy methods and methods of analyzing 
Raman spectra for a detailed study of the structure of 
field emission cathodes made of carbon materials and 
their surfaces, including the possibility of studying 
changes in their structure under different modes of 
their operation as cathodes of field emission radiation 
sources. 
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