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Abstract: This article explores a modern approach to the design of carbon dioxide (СО2) sorbents based on the concept of 
the potential energy landscape (PEL). The authors analyze the relationship between PEL characteristics and СО2 sorption 
efficiency. The article demonstrates how the manipulation of PEL parameters enables the development of optimized 
materials with desired sorption properties. The article examines the influence of the depth and distribution of energy 
minima on the selectivity, capacity, and kinetics of СО2 sorption. Various strategies for modifying the PEL, including 
surface functionalization and the targeted introduction of defects, to achieve the desired sorption characteristics are 
highlighted. Examples of different types of sorbents, such as MOFs, zeolites, and activated carbons, designed within the 
framework of the PEL concept are presented. Potential applications of the developed sorbents in carbon capture and 
storage technologies, as well as the synthesis of chemically valuable products have been considered. This review will be of 
interest to materials science and energy specialists involved in the development of new sorption materials. 
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Аннотация: Рассмотрен современный подход к проектированию сорбентов диоксида углерода (СО2) на основе 
концепции ландшафта потенциальной энергии (ЛПЭ). Приведен анализ взаимосвязи между характеристиками 
ЛПЭ и эффективностью сорбции СО2. Показано, как изменение параметров ЛПЭ позволяет разрабатывать 
оптимизированные материалы с требуемыми сорбционными свойствами. Исследовано влияние глубины  
и распределения энергетических минимумов на селективность, емкость и кинетику сорбции СО2. Обсуждаются 
различные стратегии изменения ЛПЭ, включая функционализацию поверхности, целенаправленное введение 
дефектов для достижения желаемых сорбционных характеристик. Приведены примеры различных типов 
сорбентов, таких как MOF, цеолиты, активированные угли, проектирование которых осуществлялось в рамках 
концепции ЛПЭ. Рассмотрены потенциальные применения разработанных сорбентов в технологиях улавливания, 
хранения углерода, а также синтез химически ценных продуктов. Обзор представляет интерес для специалистов  
в области материаловедения и энергетики, занимающихся разработкой новых сорбционных материалов. 
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1. Introduction 

 

With the ever increasing concentration of carbon 
dioxide (CO2) in the atmosphere and the associated 
alarming climatic changes – global warming and 
suppression of certain ecological systems – the 
development of effective methods for CO2 capture is 
becoming an increasingly urgent task [1].  
The chemical and physicochemical properties of this 
sorbate make the problem of CO2 fixation complex.  
It should be noted that CO2 has an extremely low-
energy chemical structure, which determines its 
phenomenal thermodynamic stability. It cannot be 
efficiently decomposed into its simple constituents, 
solid carbon and molecular oxygen. CO2 does not 
react chemically with other low-energy substances [1]. 
For example, even the most energetically successful 
chemical interactions of CO2 (with water and amines) 
are reversible. The enthalpic increase of the Gibbs 
free energy only partially compensates for the entropic 
prohibition against reducing the conformational 
freedom of the sorbed gas molecules [2]. 

Plants and some bacteria use CO2 to produce 
glucose, which is further converted to cellulose for 
cell walls, starch as a form of chemical energy 
storage, and proteins and lipids for the daily 
functioning of living things. The thermodynamic 
potential of CO2 physisorption is also estimated to be 
mediocre. Because of the lack of dipole moment of 
this gas molecule, its electrostatic attraction to the 
particles of potential sorbents (Lewis bases or 
nanometer pore walls) is not strong enough. While 
effective binding of CO2 is in principle hardly 
possible, many materials show a reasonably 
satisfactory sorption capacity [2, 3]. 

Currently, promising approaches include CO2 
adsorption by solid sorbents and absorption by liquid 
sorbents [4]. In particular, porous materials [5] stand 
out due to their ability to utilize their high surface 
area. In order to obtain the maximum practical benefit 
from this group of materials, it is necessary to 
optimize the diameters of the available pores as well 
as their volumes [5, 6]. In turn, liquid sorbents can be 
competitive in terms of their performance as they 
have similar intermolecular interaction energies in 
sorbent-sorbent and sorbent-sorbate pairs.  
The resulting favorable enthalpic factor should 

numerically exceed the unfavorable entropic factor. 
The latter is always unfavorable in gas sorption 
applications due to the increase in the order of the 
system, i.e. the suppression of the degrees of freedom 
of the bound sorbate [7]. In this case, the absolute 
efficiency and rating of any test sorbent is determined 
by its ability to selectively bind CO2 and by the 
kinetics of sorption and desorption. 

The aim of this review was to consider the basic 
principles of rational design of CO2 sorbents on the 
basis of the potential energy landscape (PEL) 
concept. The review provides examples of 
satisfactory theoretical realizations of this approach 
to obtain more functional materials. The PEL 
describes the dependence of the potential energy of  
a system on its internal coordinates, where the system 
under study consists of a certain number of atoms or 
molecules that define fundamentally important 
properties of the material. 

 
2. The concept of potential energy landscape 

 

The concept of PEL provides a powerful tool 
for rational design of sorbents with given properties 
[8–12]. Within the PEL concept, all possible values 
of the potential energy of a system (or other suitable 
thermodynamic potential) are unified by a single 
mathematical function depending on a set of internal 
coordinates of the system (Fig. 1).  

 

 
Fig. 1. Model PEL calculated for a small area  

of an arbitrary CO2 sorbent: x, y are arbitrarily chosen 
linear directions on a multidimensional surface;  

“Energy” is the total potential energy of the system;  
“The PEL” is the potential energy landscape 
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The concept of PEL is close in meaning to the 
concept of phase space, with the difference that PEL 
does not operate with instantaneous values of atomic 
momentum when a point within the space is given. 
Both PEL and phase space are mathematical  
models and have no material analogs.  
The multidimensionality of the PEL does not allow 
one to visualize all its surfaces simultaneously, but 
suggests mechanisms for analyzing the PEL by 
means of differential analysis for multidimensional 
functions.  

The PEL concept is applied to analyze systems 
having many possible states with different stability. 
In the context of molecular modeling, the PEL makes 
it possible to: 

– Determine the geometry of molecules: Minima 
on the PEL correspond to the most stable 
conformations of molecules; 

– Study mechanisms of chemical reactions:  
A reaction pathway on the PEL corresponds to  
a transition from one minimum (reactants) to another 
(products) through a saddle point (transition state). 
The height of the barrier between minima determines 
the activation energy of the reaction; 

– Analyze molecular dynamics: PEL allows to 
simulate the movement of atoms in a molecule and to 
study transitions between different conformations. 

Theoretical methods for studying the PEL of  
a material or working system include any 
mathematical algorithm that supports the physically 
relevant evolution of the system geometry, i.e. the 
change of its internal variables in the direction of  
a systematic decrease of the total energy of the  
z-matrix. These include classical and ab initio 
molecular dynamics, Monte Carlo Metropolis, 
iterative algorithms for minimizing the forces acting 
on each atom in the system, and algorithms for 
finding the global minimum of energy with a 
stochastic component, such as the periodic kinetic 
energy injection method [13–16]. The most valuable 
information provided by the latter is the list of low-
energy stationary points. The obtained minima of the 
potential energy of the system are uniquely 
characterized in terms of total energy and geometrical 
parameters (z-matrix of the structure). The total 
energy depends on the Hamiltonian applied to the 
model system. It is useful to express this quantity in 
terms of the detected global minimum belonging to 
the PEL. Among the most relevant groups of model 
Hamiltonians, we would like to highlight the 
following three, which are characterized below. 

First, we deal with the molecular-mechanical 
Hamiltonians. In standard applications they represent 
the integral potential energy by the sum of 

independent equations for the interatomic Coulomb 
(~R–12) and London (~R–6) forces and the 
interelectronic repulsion forces (~R–12). If covalent 
bonds are present in the system, bond, valence plane 
angle and valence dihedral angle equations must be 
defined [17–19]. These equations specify a harmonic 
or more complex dependence of the energy of the 
system on its actual deviation from the initially given 
equilibrium value. Such interaction potentials do not 
imply the breaking and forming of covalent bonds, 
but adequately reproduce the thermal motion of 
atoms at sufficiently high temperatures and pressures 
[20–23]. Molecular mechanical potentials are still 
actively used in biophysical and materials science 
research projects [24], including the design of 
sorption materials for CO2. 

Second, Density Functional Theory (DFT) 
provides the optimal balance between the accuracy of 
capturing the electronic structure of the material and 
the cost of the computational cycle. DFT is 
ubiquitously used in materials science problems, 
including the analysis of possibilities for improvement 
of previously known sorbents [14, 25–28].  
The screening of possible directions for improving 
the properties of the base material is performed by 
testing the PEL for each structural modification 
option in terms of thermodynamic potentials.  
In particular, PEL scans are often performed along 
the assumed coordinates of the chemisorption 
reaction and physisorption process to identify 
activation barriers and preferred sorption centers in 
the case of functionalized materials. 

Third, semiempirical Hamiltonians – both 
derived from Hartree-Fock theory and based on 
simplified Density Functional Theory – provide  
a rather comfortable balance between the size of the 
system and the duration of the numerical calculation 
[29–32]. It seems possible to improve the 
computational performance by more than three orders 
of magnitude compared to Hartree-Fock and most 
DFT methods. Unfortunately, none of the semi-
empirical methods solve the problem of increasing 
the computational cost by three orders of magnitude 
while increasing the problem size by only a factor of 
two [30]. Because of the relatively low computational 
cost, semiempirical Hamiltonians are particularly 
important for the study of PEL, which requires 
extensive initial scans to qualitatively understand the 
shape of the landscape [30, 33–35]. 

Certain PEL properties can be obtained or 
verified by experimental physical methods [36–40], 
such as structural analysis (XRD, AFM), 
spectroscopy (FTIR, Raman, NMR) and, to a large 
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extent, modern electron microscopy (REM, SEM, 
TEM). The measurement of the heat of adsorption by 
chemical calorimetry techniques allows determining 
the binding energy of CO2 to the sorbent. On the 
other hand, by measuring adsorption isotherms, 
adsorption capacity and adsorption kinetics can be 
determined to better parameterize and confirm the 
main patterns on the PEL. A combination of 
theoretical and experimental methods is the most 
relevant philosophy of modern materials science.  
In this case, the more resource-intensive part is 
delegated to molecular modeling methods. 

 
3. Results and Discussion 

 

The development of more efficient materials for 
primary CO2 sorption is being actively pursued 
worldwide. While some technologies have already 
been implemented in industry, e.g. amine scrubbing 
[40], many still need to be improved and made more 
competitive [38–41]. However, the largest group of 
methods is of purely academic interest [21, 24, 42–45]. 
The main reason for this situation is the excessive 
cost of the proposed materials. Systematic research 
on the PEL characteristics of economically inefficient 
materials can pave the way for their cheaper 
production.  

Let us consider some currently used and 
promising carbon dioxide sorbents to which the 
concept of potential energy landscape has been 
applied. 

 
3.1. Using inorganic compounds 

 

According to the principle of chemistry of 
inorganic compounds, the reactions of carbonate 
formation can be a basic solution. For example, 
strong bases – hydroxides of calcium, sodium, 
potassium, lithium – have good CO2 sorption 
parameters. Calcium and iron oxides are also worth 
mentioning [1, 46]. A PEL study using a combination 

of global minimum search and molecular dynamics 
simulations for an alkaline earth metal salt with  
a weakly coordinating anion showed that calcium 
tetrakis (pentafluorophenyl)-borate traps 5.5 CO2 
molecules per calcium atom, while barium tetrakis 
(pentafluorophenyl)-borate traps 3.6 CO2 molecules 
per calcium atom [46]. Iron oxide reacts with CO2 
and moisture to form iron carbonate, effectively 
removing CO2 from the environment. This is widely 
used as an absorber in food packaging and industrial 
applications. 

 
3.2. Using organic compounds 

 

Among the organic sorbents, ionic liquids should 
be mentioned [7]. This term covers a large group of 
solvents with a very wide temperature range of the 
liquid state. Due to the liquid aggregate state of the 
sorbent, gas absorption occurs with its entire volume 
(Fig. 2). Many ionic liquids form hydrogen bonds of 
varying strength with one of the oxygen atoms of 
CO2. Thus, the sorbent and the sorbate develop an 
affinity between them [23, 47–50]. Lanyun Wang et 
al. performed molecular dynamics calculations for 
hybrid systems containing ionic liquids, metal cations 
and CO2, which showed that in [Bmim][BF4]–MBF4, 
the Na+ ion has the least tendency to aggregate and 
form an M+ layer, making it difficult for CO2 to 
contact the anion. In addition, Na+ has the strongest 
attraction to the [BF4]– anion, which favours the 
expansion of the [Bmim][BF4] space and 
consequently an increase in the number of CO2 
molecules absorbed. This is in agreement with the 
experimental data. On the other hand, the addition of 
other metal cations weakens the ability of the [Ac]– 
anion to chemically bind to CO2, which is the main 
reason for the decrease in the absorption capacity of 
the system [23]. 

 

 
Fig. 2. Phosphonium and sulfonium ionic liquids with aprotonic heterocyclic anions for CO2 chemisorption.  

Reproduced from the author's open-access source [51] 
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The authors of this article have investigated the 
mechanism of carbon dioxide sorption by sulfonium 
and phosphonium ionic liquids (Fig. 2) through the 
formation of intermediate products – ylides.  
To evaluate the efficiency of sorbents, electronic 
properties were calculated, charge transfer was 
studied, and geometrical parameters of compounds 
were estimated [51]. 

 
3.3. Using liquid membranes 

 

CO2 is separated from other gases by liquid 
membranes, which are thin layers of liquid. Liquid 
membranes selectively allow CO2 to pass through 
while retaining other gases due to the different 
binding strengths of different gases. The liquid layer 
can be sandwiched between two gas-permeable 
membranes or deposited on a porous substrate  
[52–54]. Hao Dong et al. investigated the CO2/H2 
sorption selectivity of graphene oxide based 
membranes with different ionic liquids. PEL 
calculation by density functional theory method and 
binding energy determination explained the 
preferential permeation of CO2 over H2 and the 
anomalously high values for graphene oxide with 
C4mimBF4 ionic liquid [52]. Compared to traditional 
gas separation methods such as cryogenic distillation, 
liquid membranes require less energy. In addition, 
membrane systems are generally more compact than 
other gas separation technologies. In a supported 
liquid membrane, the liquid phase is retained in the 
pores of the porous substrate. In an emulsion 
membrane, the liquid phase is dispersed as an 
emulsion in another liquid. This technology is used in 
natural gas purification, CO2 capture from flue gas 
waste and separation of gases such as CO2, H2S and 
N2 in the petrochemical industry [42, 55–58]. 
Guangyao Yu et al. studied the reduction reaction of 
carbon dioxide on graphene substrate doped with 
magnesium, nickel and nitrogen. The PEL calculation 
and the resulting charges, electronic state densities 
and Gibbs energies confirmed the assumption that 
both magnesium and nickel centres are jointly 
involved in the reaction [55]. The study of the PEL of 
a sorbent in direct contact with the pollutant gas is the 
most obvious application of the PEL concept.  
The same applies without reservation to the solution 
of competitive absorption problems. The knowledge 
of the parameters of the corresponding PEL 
dramatically changes the speed of the design of a new 
material, although it requires experimental 
verification. 

3.4. Development of polymeric membranes 
 

PEL can be of great support for the synthesis of 
polymeric membranes in which the most successful 
structural patterns are purposefully combined to 
accelerate CO2 absorption kinetics and increase 
sorbent capacity. Understanding the activation 
barriers of the process and the specificity of steric 
factors makes it possible to design the most 
promising new sorbents. 
 

3.5. CO2 capture using biological systems 
 

Microalgae such as chlorella and spirulina are 
capable of absorbing CO2 during photosynthesis [59]. 
This is an environmentally friendly and sustainable 
way to capture CO2, which can be used to produce 
biofuels and other valuable products. Some enzymes, 
such as carboanhydrase, can catalyze the hydration 
reaction of CO2, converting it into bicarbonate.  
This approach can be used to create biological CO2 
capture systems [59]. 
 

3.6. PEL study to evaluate the efficiency  
of CO2 sorption 

 

In the context of gas sorption by a solid or liquid 
material, the PEL determines the interaction of a CO2 
molecule with the sorbent surface [60–63]. In cases 
where CO2 is fixed by the entire volume of the 
sorbent, the difficulty of PEL analysis increases 
significantly because of the number of landscape 
dimensions involved. For example, the minima on the 
PEL correspond to stable states of the sorbed 
molecule, and the depth of the minimum 
characterizes the energy of its binding to the sorbate. 
A sorbent can have different types of active centers 
with different CO2 binding energies. This is shown 
on the PEL as multiple minima of different depths. 
The barriers on the PEL determine the kinetics of 
sorption and desorption and indicate the relative 
simplicity or complexity of activation of these 
processes. A comparison of the activation barriers 
present on the PELs allows the researcher to 
understand the microscopic scenario in which the 
physical and chemical processes induced in the 
system will unfold [15, 27, 28, 64, 65]. Note that each 
PEL contains information about a large number of 
behavioral scenarios, but only the lowest energy 
scenarios are projected in the real world. In systems 
confined at high temperatures and pressures, the 
probabilities of high-energy and low-energy scenarios 
are balanced as the limiting role of activation barriers 
on PELs is offset [66–68]. 



 

Chaban V.V., Andreeva N.A. 

Journal of Advanced Materials and Technologies. 2025. Vol. 10, No. 2  

172

Table 1. Relationship between PEL characteristics and CO2 sorption efficiency 
 

Sorbent Coordination centers 
Distance between 
adsorption center 

and CO2, nm 

Enthalpy 
of the formation, 

kJ⋅mol–1 

Bindingenergy, 
kJ⋅mol–1 Source 

Study of geometrical parameters 
[emim][TfO] C(CO2)–O(TfO) 0.235  29.8 [14] 
[emim][Tf2N] O(CO2)–H(emim) 0.236  23.3 [14] 
amino-functionalized 
graphene (FG) 

C(CO2)–N(FG) 0.137 +9.36  [16] 

–CH2–COO– C(CO2)–O 0.254  19 [39] 
–CH2–NH–CO–CH2– C(CO2)–O 0.289  9 [39] 
–CH2–N(CO)2–C6H3– C(CO2)–O 0.295  8 [39] 
–CH2–O–CH2– C(CO2)–O 0.275  10 [39] 
–C6H4–O–C6H4– C(CO2)–O 0.318  4.4 [39] 
–CH2–Si–(OCH3)3 C(CO2)–O 0.293  7.3 [39] 
bmim O(CO2)–H 0.231  14 [39] 
TBA O(CO2)–H 0.267  6.7 [39] 
TBP O(CO2)–H 0.324  3.7 [39] 
BMPYRR O(CO2)–H 0.262  9.3 [39] 

Study of chemical reaction path 
indazolide C(CO2)–N  –68  [15] 
1,2,4–triazolide C(CO2)–N  –46  [15] 
benzimidazolide C(CO2)–N  –40  [15] 
3–trifluoromethyl-
pyrazolide 

C(CO2)–N  –6  [15] 

[P2224][BENZIM] C(CO2)–C(P2224) 0.157 –132  [27] 
[P66614][BENZIM] C(CO2)–C(P66614) 0.158 –129  [27] 
[P2224][2MTBENZIM] C(CO2)–C(P2224) 0.159 –71  [27] 
[P66614]  
[2MTBENZIM] 

C(CO2)–C(P66614) 0.158 –127  [27] 

tetraethylammonium 
1,2,3- 
triazolide 

C(CO2)–
N(triazolide) 

0.152 –23  [28] 

Study ofmolecularconformations 
Dialkylcarbonates(DAC) C(CO2)–О(DAC) 0.246 –11.6 (D8C)  [25] 
[Bmim][BF4] 

anion/ 
cation/metal– СО2. 

anion – 
CO2<cation – CO2 

  [23] 
[Bmim][BF4]–[Li][BF4]   [23] 
[Bmim][BF4]–
[Na][BF4] 

  [23] 

[Bmim][BF4]–[K][BF4]   [23] 
[Bmim][Ac]   [23] 
[Bmim][Ac][Li][Ac]   [23] 
[Bmim][Ac]–[Na][Ac]   [23] 
[Bmim][Ac]–[K][Ac]   [23] 
[Ca][TFPB] O(CO2)–Ca 0.22 –8  [46] 
[Ba][TFPB] O(CO2)–Ba 0.30 –7.8  [46] 
C1mimBF4    1.01 [52] 
C4mimBF4    1.32 [52] 
C8mimBF4    1.54 [52] 
C4mimPF6    1.34 [52] 
C4mimOTf    1.44 [52] 
C4mimNTf2    1.82 [52] 
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Table 1 shows the relationships between some 
parameters characterizing the CO2 sorption efficiency 
and the PEL for a number of sorbents studied. 
Geometric parameters, chemical reaction pathways, 
and molecular conformation studies were considered 
as options for applying the PEL concept.  
The following descriptors were selected for analysis: 
distance between interacting centers, enthalpy of 
formation, and binding energy. The distance between 
interacting centers is an important parameter that 
reflects the force of attraction between the particles. 
The bond length determined by this distance indicates 
the nature of the interaction – electrostatic or covalent 
– and is inversely proportional to the bond strength: 
the smaller the distance, the stronger the bond.  
The distances for the sorbents shown in Table 1 range 
from 0.137 nm between CO2 carbon and nitrogen of 
functionalized graphene, corresponding to a covalent 
bond, to 0.324 nm between CO2 oxygen and 
hydrogen of tetrabutylphosphonium (TBP), 
corresponding to an electrostatic interaction.  
The enthalpy of formation, whose negative value 
indicates the exothermic character of the process, is 
also an important factor that often favors sorption.  
For amine-functionalized graphene, the enthalpy of 
addition of the CO2 molecule is positive, 
+9.36 kJ⋅mol–1. This indicates a lower stability of the 
obtained compound compared to the starting 
materials. A negative enthalpy of formation, as in 
[P2224][BENZIM] –132 kJ⋅mol–1, [P66614] 
[BENZIM] –129 kJ⋅mol–1 and others, indicates the 
stability of the formed product. Finally, the binding 
energy, which characterizes the strength of the 
interaction between the elements of the system, is 
directly correlated with the bond strength and 
corresponds to the depth of the potential well on the 
PEL. 

The PEL of a sorbent is determined by its 
chemical composition and surface structure. The key 
factors affecting the PEL are as follows.  
The chemical nature of the adsorption centers 
determines the intermolecular interactions between 
the sorbent and the sorbate. The introduction of 
functional groups capable of interacting specifically 
with CO2 can increase the binding energy and 
selectivity of adsorption (Fig. 3). For example, amine, 
hydroxyl, and carboxyl groups exhibit relatively 
strong electrostatic interaction with the bound gas 
molecules [69–71]. This increases the enthalpic gain 
in absorption and adsorption applications by liquid 
and solid porous materials. The porosity and specific 
surface area of the sorbent have a positive effect on 
its CO2 sorption capacity. At the same time, such  
 

 
 

Fig. 3. The use of aminated cations representing different 
families of ionic liquids for CO2 chemisorption. 

Thermodynamic modeling based on the PEL concept. 
Reproduced from the author's source [76] with permission 

from Elsevier. CopyrightElsevier 2024 
 
sorbent characteristics can worsen the sorption and 
desorption kinetics. The manifestation of this effect 
should be expected in case of the presence of 
“pockets” in the porous sorbent sample, which are 
difficult to access for sorbate particles. The correct 
design of hierarchical porous structures is the primary 
task in the application of the PEL concept.  
A developed porous structure with a large specific 
surface area provides a large number of sorption 
centers and, consequently, a high sorption capacity of 
the material [5, 71–75]. 

Achieving a perfect match between the pore 
diameter of the synthesized material and the effective 
diameter of the CO2 molecule is considered  
a challenge for current chemical nanotechnology. 
Visible success in the controlled production of pores 
with a strictly required diameter could fundamentally 
change the situation with the adsorption of 
greenhouse gases. These gases are (in order of their 
negative impact on the planet's atmosphere) water 
vapor, CO2, methane, ozone, and nitrous oxide.  
It is not difficult to see the similarity in the size of the 
molecules of the most harmful greenhouse gases. 
Having a cheap way to synthesize a material of 
random chemical composition with a significant 
number of pores with an effective diameter of about 
0.5 nm could take the current state of this field of 
research to a new level. Even if such a nanomaterial 
does not provide the desired selectivity towards 
dinitrogen and dioxygen, it would easily capture 
harmful emissions from industries. 

Currently, it is believed that efficient adsorption 
of CO2 requires micropores (less than 2 nm), which 
provide a sufficiently strong interaction with CO2.  
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In turn, mesopores, 2–50 nm, satisfy the requirement 
for rapid transport of CO2 molecules to the 
adsorption centers. Surface morphology, such as 
defects and roughness, can influence the availability 
of adsorption centers and adsorption kinetics [77–80]. 

 
3.7. Development of sorbents 
 by functional groupsgrafting 

 

The introduction of functional groups into the 
sorbent surface is one of the most effective ways to 
modify the PEL towards its affinity for CO2.  
As Lewis bases, amines form chemical bonds with 
CO2, resulting in significant chemisorption energy. 
Nevertheless, the reaction of amine-functionalized 
material with CO2 is reversible [16]. In the 
development of new sorbents, it is important to 
consider the sorption energy, as CO2 desorption and 
sorbent regeneration are still required [81–84]. 

Hydroxyl groups only form hydrogen bonds 
with CO2. This ensures moderate gas adsorption 
energy and consequently cheaper desorption. 
Carboxyl groups, on the other hand, are also capable 
of forming hydrogen bonds with CO2 and can 
participate in ionic interactions that are sufficiently 
strong by the standards of physisorption processes. 
The PEL directly reflects these non-covalent 
interactions and makes the search for optimal 
structural parameters more rational. Further grafting 
of the sorbent has minor effects to the PEL. 
 

3.8. The use of porous materials 
 

It should be reiterated that, in addition to the 
presence of molecular fragments with the properties 
of Lewis bases in the sorbent composition [16], the 
hierarchical porous structure should be considered as 
an independent factor stimulating the sorption 
capacity. When located in a very narrow pore, the 
CO2 molecule is attracted by the London forces 
simultaneously to all its walls. Because of this, the 
enthalpy of adsorption more than doubles compared 
to the above mentioned two-nanometer pores.  
The developed porous structure with high specific 
surface area is an important factor for efficient CO2 
adsorption. 

Activated carbons possess the high specific 
surface area and relatively adjustable porous structure 
desired by researchers. Such carbon materials are 
highly reactive, i.e., they can be easily functionalized 
with carboxyl, hydroxyl, or amine groups [85, 86]. 
For example, the previously well-studied oxidized 
graphite and graphene samples, which also 

preferentially contain sp2-hybridized carbon atoms, 
can be applied [86]. Activated carbon definitely 
represents a suitable starting platform for the 
improvement of CO2 sorbents. The PEL concept 
assists in comparing the thermodynamic effect in the 
case of different types of grafting of the initial carbon 
material. 

 
3.9. The use of zeolites 

 

Zeolites are crystalline aluminosilicates that also 
have a fairly ordered porous structure [87–90].  
The pore size and chemical composition of zeolites 
can be varied to a certain extent by chemical methods 
to optimize the adsorption properties [89, 90].  
The thermodynamic stability of this group of sorption 
materials promotes their large-scale application in 
environmental technologies [91–93]. 
 

3.10. Metal-organic frameworks 
 

Similarly, metal-organic frameworks (MOFs) 
represent a new class of porous materials with high 
specific surface area and tunable structure [71].  
The research interest in MOFs in the context of CO2 
sorption is primarily due to their structural diversity 
and suitable pore sizes [94–97]. More importantly, it 
seems uncomplicated to use MOF active centers to 
intercalate additional sorption active centers. A full-
fledged study of the PEL of MOFs has still not been 
carried out, despite many localized problems in this 
field solved using DFT [98, 99]. PEL is crucial to 
understand the limiting capacities of MOF structures 
with respect to greenhouse gases. The practical 
difficulty in analyzing the PEL for different MOF 
structures is that the unit cell size of these periodic 
structures is too large [71] to allow a full PEL 
sampling by DFT methods with a plane-wave basis 
set. 
 

3.11. Composite materials 
 

The design of composite materials combining 
the properties of different components with 
individual adsorption properties can achieve 
synergetic effects and improve the adsorption 
performance of the new product [16, 76, 100–102]. 
Carbon-based composites have attracted paramount 
attention in this context because carbon chemistry is 
extremely diverse and the techniques for its 
realization are not badly documented as of today.  
The incorporation of metal oxide nanoparticles into 
the carbon matrix allows to increase the binding 
energy of the thus obtained new sorbent material with 
CO2. Improved MOF-based composite materials can 
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be obtained in a similar manner [71, 103, 104]. 
Combinations of MOFs with polymers show 
improved mechanical properties and thermodynamic 
stability of the sorbent. The flexible polymer chains 
are able to partially penetrate the MOF pores because 
of the matching size. Thus, more perfect atom 
packing variants are achieved. At the same time, the 
polymer contains groups important for CO2 sorption, 
and the obtained material can be considered for gas 
binding. The combined effect of the combination of 
micropores and functional groups can be quite large 
in the context of practical applications of the 
composite material. 
 

3.12. Nanotubes and zeolites 
 

By combining carbon nanotubes with various 
substances, sorbents with high adsorption capacities 
and good regenerability can be created [60, 66].  
In turn, zeolites allow to achieve high selectivity for 
CO2, but only under the condition of proper selection 
of the pore hierarchy, which thermodynamically 
favor the retention of this gas. Note that the size of 
pores and the variation of their diameters in materials 
based on silicon compounds, in most cases is 
significantly larger compared to carbon materials. In 
turn, the preparation of zeolites for adsorption tasks is 
often cheaper and can be a more relevant solution for 
large industrial applications. 
 
3.13. Electrochemical adsorption of carbon dioxide 

 
A recent workable method of electrochemical 

CO2 capture, in which a charged carbon cathode is 
the adsorbent, has been proven by the authors of this 
review using molecular modeling [105] (Fig. 4).  
 

 
 

Fig. 4. One of the measurements of the PEL,  
the linear distance between the CO2 carbon atom  

and the carbon atom of the positively charged graphite 
layer, characterizing the electrochemical chemisorption of 

CO2 on the graphite cathode. Reproduced  
from the author’s source [105] with permission  

from Elsevier. Copyright Elsevier 2024 

The point is that when voltage is applied to the 
cathode, the carbon structure constituting it receives 
additional π-filled orbitals. Due to this, the carbon 
partially acquires the chemical properties of nitrogen. 
A nucleophilic addition reaction occurs with the 
formation of a covalent bond carbon (sorbent)-carbon 
(CO2) [106].  

According to the calculated PEL plots, this bond 
is kinetically stable up until the cathode is 
disconnected from the current source [105].  
The developed sorbent can be used in solid state. 
Thus, a more significant chemisorption energy is 
added to the physisorption energy due to the London 
interaction with the pore walls. A reformulation of 
the method in which the nano-organized carbon 
(graphene, nanotube, graphite) is dispersed in some 
suitable solvent that supports exfoliation is probably 
also possible [16]. Since electrochemical adsorption 
relies on an electrical energy source rather than  
a chemical one, as more traditional methods of CO2 
capture, its implementation and scaling appear to be 
more efficient [105]. 

The PEL modifications presented in this work 
are summarized in Table 2. 
 

4. Conclusion 
 

We have reviewed all relevant chemical 
compounds and materials that can be expected to 
improve CO2 sorbents and noted the applicability of 
the PEL concept to the given objectives. All the 
discussed promising materials should be categorized 
into three groups. The first includes amine scrubbing 
technology related solutions in which the 
chemisorption centers are the same amino group 
cleaved to a liquid carrier, for example, an ionic 
liquid cation [102]. The second group includes solid 
porous materials with complex hierarchical pore 
structure based on carbon, silicon or MOF [99, 107]. 
The third group includes combinations of structural 
fragments belonging to the first and second groups 
recombined into a single material. For example, an 
extensive surface of activated carbon, decorated with 
amino groups [16], solves the problem of sorbent 
volatility in the case of classical amine scrubbing [40]. 

The PEL concept is a powerful tool for the 
rational design of porous CO2 sorbents. Further 
development in this area involves systematizing the 
design of new materials with specific properties. 
Using nanotechnologies and composite materials 
opens up broad opportunities for creating highly 
efficient CO2 sorbents. Applying more precise 
quantum-chemical methods and developing new 
experimental techniques will allow to more accurately 
reveal the types of CO2-sorbent interactions depending 
on the sorption's specificity and purpose [16]. 
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Table 2. Strategies for changing the potential energy landscape 
 

Type of PEL changing  Source 

Modification of the sorbent surface 

Grafting amino groups onto the graphene surface changes the PEL and creates active centers for 
interaction with sorbate molecules. Quantum-chemical calculations, including calculation of electron 
density distribution, electrostatic potential and thermodynamic potentials, allow to study the interaction of 
sorbate with the modified surface 

[16], [85] 

In order to study the mechanism of sorption during cellulose modification to produce a polyionic liquid, 
both experimental studies and molecular dynamics calculations were carried out. Modeling allowed to 
establish the key role of anion in the sorption process and to reveal the peculiarities of interaction of each 
element in the system 

[38] 

Functionalization of ionic liquid cations by amino groups for CO2 sorption. The sorption capacities of the 
new compounds were determined by calculating thermodynamic potentials 

[76], 
[102] 

Modification of fullerene C-60 by grafting amino groups yields a non-volatile compound promising for 
CO2 sorption. Quantum chemical calculations including charge distribution, dipole moment and HOMO-
LUMO energy analyses, as well as calculation of the Gibbs energy change (ΔG) upon interaction with 
CO2 are used to evaluate the sorption capacity of the modified fullerene 

[100] 

Introduction of defects 

The incorporation of magnesium, nickel and nitrogen into the carbon matrix, as well as the calculation of 
Gibbs energy, allowed the identification of the centers involved in the electroreduction of CO2 [55] 

Nickel and nitrogen atoms were deposited on a carbon carrier. Thermodynamic potentials were calculated 
for the modified system. The study shows that Ni plays an important role in CO2 activation, providing a 
low energy barrier for Ni−C bond formation and facilitating further CO2 reduction 

[56] 

Charge transfer to the sorbent 

Modification of the sorbent surface by introducing additional negative charge changes the PEL. In the 
case of graphene, the negative charge is responsible for lowering the energy barrier and reducing the 
thermal effect of the reaction, which contributes to the increase of its sorption properties 

[105], 
[106] 

 
PEL is an important tool for the theoretical and 

modeling study of substances and materials. 
Incorporating it into the working program of a 
materials research group makes it possible to consider 
potential energy as a physical property at the atomic 
level. Meanwhile, although experimental research on 
materials allows for the acquisition of indirect energy 
descriptors, it cannot compare to the spatial 
resolution of the microscopic results provided.  
Even the interpretation of new types of electron 
microscopy relies to some extent on the PEL 
modeling. As convincingly demonstrated in this 
review, the specific features of PELs can be 
correlated with macroscopic properties of materials 
or processes. 

The PEL concept can be used to develop carbon 
dioxide sorbents for various industries that emit CO2 
or require CO2 capture. Currently, fossil fuel-fired 
thermal power plants, cement and metallurgical 
plants, oil refineries, and chemical plants are the main 
producers of carbon dioxide [1–3, 18, 24, 53]. 

Technological optimization of sorption and 
desorption process parameters will allow for 
increased efficiency and cost-effectiveness of the 
CO2 capture process in the future. Currently, our 
expert opinion leans toward microporous silicon and 
carbon materials, along with MOFs that have the 
right elemental composition to trigger electrostatic 
interaction between the sorbent and the sorbate  
[98, 99]. When discussing competing materials 
science solutions, it should be understood that the 
winning technology is almost always the cheapest. 
Developing commercially successful methods for 
obtaining narrow pores with small diameter variation 
should be prioritized. 
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