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Abstract 
 

Currently used dispersion methods are not able to provide sufficient dispersion of nanomodifiers in liquids.  
This circumstance significantly reduces the effectiveness of the subsequent use of liquid-phase nanomodifiers which are 
widely used in the production of a variety of composite polymer and ceramic structures. The article discusses a new method of 
dispersing and suspending liquids using ultra-jet technology. The results of experimental testing confirming the effectiveness 
of ultra-jet technologies for producing liquid suspensions with nanomodifiers are presented. Two different types of powder 
were chosen as liquid modifiers: boehmite and carbon nanotubes. Moreover, special technological equipment was developed to 
conduct the experiment. The results of the analysis of the obtained liquid suspensions containing nanomodifiers allow us to 
recommend this dispersion technology for use on an industrial scale. 
 
Keywords  
 

Liquid; ultra-jet technology; suspension; dispersion; target. 
 

©  Kyaw Myo Htet, M.P. Glotova, A.L. Galinovsky, 2020 
 

 
Introduction 

 

Suspensions are a two-phase homogeneous 
hydrostructure consisting of a liquid (colloidal solution, 
gel, etc.) and fine solid particles that are suspended 
under normal conditions. Most hydrotechnological 
media, including ordinary water, can be considered as 
specific ultrafine-dispersed suspensions with a very low 
concentration of solid-phase particles. The presence of 
solid particles of a certain composition, number, 
concentration, shape, size and other physicochemical 
parameters in a liquid can significantly change the 
initial properties of the liquid (matrix) and filler – the 
particles themselves, for example, due to the 
manifestation of various boundary effects. In this sense, 
a suspension is a liquid-solid-phase quasi-equilibrium 
system that has all the features of a classical composite 
material: the implementation of the principles of 
synergy, as well as structural and physicochemical 
heterogeneity, etc. [1–3]. 

The dispersion method is based on grinding the 
initial solid-phase material (materials) to a given degree 
of dispersion. This process can be carried out both 
directly in the liquid to be suspended, or as a separate 
technological operation for obtaining a fine powder, 

which is then introduced into the initial liquid.  
The dominant physical and technological process in the 
dispersion production of suspensions is the controlled 
multiple, parallel-sequential fractionation (destruction) 
of the solid-phase filler of the suspension to a finely 
dispersed state. This process is characterized by a sharp 
increase in the specific surface energy of the formed 
solid particles, changes in the initial dislocation 
structure of the filler, etc., which leads to a certain 
activation of the resulting suspension as a whole [4–5]. 

Most dispersion methods are based on mechanical 
destruction (grinding, dispersing) of the solid-phase 
material of the suspension filler. However, other 
specific methods of dispersing a solid-phase filler can 
be proposed: evaporation of a solid-state target by a 
laser beam under a layer of a transparent liquid, 
implementation of the dispersion process by means of 
an electrohydraulic discharge, etc. Among the known 
methods of mechano-physical dispersion, the 
traditional ultrasonic method and its various 
modifications should be distinguished as a fairly 
universal and technologically multifunctional option for 
obtaining suspensions of various degrees of dispersion, 
including ultrafine ones (Fig. 1). 
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Fig. 1. Main commonly used suspension methods 
 

Experimental studies for dispersion 
 

The purpose of this work is to develop a new 
method for dispersing and suspending liquids for their 
modification using ultra-jet technologies. 

It is known that dispersion and deagglomeration 
effects are associated with cavitation which is the result 
of the action of ultrasonic waves on the processed 
liquid-phase material – suspension. When treating 
suspensions with ultrasound, sound waves that 
 

propagate in the liquid lead to alternating high and low 
pressure cycles. In this case, the mechanical stress acts 
on the attractive electrostatic forces between the 
individual particles. Ultrasonic cavitation in liquids 
causes the formation of microjets in liquids with a high 
speed of up to 1000 km/h (approximately 600 m/h). 
Such microjets act on liquid and particles separating 
them from each other. Some particles are accelerated 
along with liquid microjets and collide with each other 
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at high speeds, which also leads to deagglomeration. 
This makes ultrasound an effective means for 
dispersing, as well as for grinding micron and 
submicron particles [6]. 

According to [4], to prepare a mixture for 
ultrasonic treatment, 0.3 g of nanopowders mixed with 
10 ml of water in a cup placed under an ultrasonic 
treatment machine in the laboratory hall of the SM-12 
department of the Bauman Moscow State Technical 
University were used (Fig. 2). 

But, nevertheless, the method has a number of 
disadvantages. This is, first of all, an increase in the 
liquid temperature during ultrasonic treatment which 
negatively affects a number of processed materials 
prone to polymerization. This limits the possibilities of 
the method and raises the question of creating new, 
more efficient processing technologies. In other words, 
in a number of cases, there is an urgent need to create 
new effective technological means for deagglomeration 
and dispersion of nano-containing suspensions.  
This would make it possible to realize the full potential 
of nanoscale structures in matters of their application in 
the creating new materials with new special properties, 
first of all, polymer composite materials [4, 7–9]. 

Thus, at the next stage of research, the possibilities 
of ultra-jet treatment of suspensions were studied.  
The research was based on the methodological base 
which was formed within the framework of the 
scientific school “Ultra-jet processing and diagnostics 
of materials and liquids” (NSh-3778.2018.8) at the 
department SM-12 of the Bauman Moscow State 
Technical University [10–15]. It should be noted that 
 

 
Fig. 2. A set-up of a dispersion process diagram  

for ultrasonic treatment: 
1 – unit body; 2 – ultrasonic generator;  

3 – ultrasonic waveguide; 4 – suspension glass;  
5 – nano-containing suspension 

 
 

Fig. 3. A schematic diagram of ultra-jet dispersion  
of nano-containing suspensions: 

1 – jet-forming hydraulic nozzle; 2 – mixing chamber; 3 – high-
speed liquid jet; 4 – capacity for premix (nano-containing 
suspension); 5 – focusing tube; 6 – high-speed jet of suspension; 
7 – target made of synthetic diamond; 8 – processed suspension; 
9 – trap tank for collecting the suspension 

 
the works by V.S. Puzakov show that the effects of 
liquids activation after ultra-jetting can also be 
associated with the presence of the ultra-jet and the 
obstacle of ultrasonic vibrations and cavitation 
processes in the interaction zone [6]. 

Fig. 3 shows the Flow Waterjet hydraulic unit used 
in the experiment with a high-pressure (up to 400 MPa) 
multiplier type system, as well as a schematic diagram 
of ultra-jet dispersion of suspensions [7]. 

During the experimental development of the ultra-
jet technology, the nano-containing suspensions were 
subjected to treatment – dispersion according to the 
scheme presented in Fig. 2. Suspensions based on 
distilled water with boehmite (produced by the research 
institute of impulse processes with pilot production 
“OHP NII IP with OP”, Minsk, Belarus) and carbon 
nanotubes (Arquema, France) were fed into the mixing 
chamber 2 of the ultra-jet unit using a special 
measuring dispenser 4. The suspension acceleration 
was ∼800 m/s which corresponds to the maximum 
working pressure in the hydraulic system of 400 MPa. 
Earlier it was found that the ultra-jet speed determines 
the efficiency of liquid treatment [16–20]. Specially 
designed technological equipment was used as a 
container 9 (Fig. 4). The target is a synthetic diamond 
fixed in a mandrel, which, in turn, is fixed in the tube of 
the container lid using screws 4 (Fig. 4). 
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Fig. 4. Technological equipment for dispersing micro and nanosuspensions: 
1 – branch pipe for installing a focusing tube; 2 – cylindrical target with a diamond single crystal fixed in it; 3 – tank for 

collecting the suspension (the tank bottom); 4 – screws – an element for fixing the top cover to the bottom of the container for 
collecting the suspension; 5 – screws –a target fixing element 

 
Table 1 

 

Characteristics of samples of initial nanomaterials 
used for the preparation of suspensions  

and their further dispersion 
 

Composition Technological and operational 
characteristics of the powder 

Al (OOH) 
“Boehmite” 

–  Mass fraction of the main substance, 
not less than 99 %; 

–  Specific surface according to the BET 
method, up to 400 m2/g; 

–  Pycnometric true density, 3.06 g/cm3; 
–  The size of individual particles, 

0.1 – 0.8 nm 
Carbon 
nanotubes 

–  Outer diameter: 10 – 20 nm; 
–  Tube length: more than 2 microns; 
–  Specific surface by BET method: 

> 300 m2/g; 
–  Content of impurities no more than 

1 % 
 

The characteristics of the studied samples of 
nanomaterials are presented in Table 1. 

After the ultra-jetting procedure, the treated nano-
containing suspensions were studied using  
a MicrotracBluewave laser particle size analyzer 
(Microtrac S3500) operating on the tri-laser technology  

 
 

Fig. 5. A Microtrac S3500 Laser Particle Analyzer 
 
shown in Fig. 5. The laser particle size analyzer 
(diagnosed size range – from 0.01 to 2816 microns) 
allows to distribute particles by size in suspensions, 
emulsions, powders using the method of laser 
granulometry. 

The analysis results were the average particle sizes 
in terms of quantitative and volumetric distributions, as 
well as the minimum recorded particle size in the 
samples. 

The measurement results, which are histograms of 
the quantitative distribution of the average particle size, 
are shown in Figs. 6–8 in the initial state, after 
ultrasonic and ultra-jet treatment, respectively. 
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a) b) 

 
Fig. 9. Technological equipment  

for obtaining and collecting suspension: 
a – securing the specimen in the tooling;  

b – the process of alignment of the ultra-jet hydraulic nozzle 
with the hole in the disk of the upper cover of the tank  

for collecting the suspension 
 

At the next stage of experiments using a particle 
analyzer, the following was determined: the mass 
concentration of ultra-jet suspensions; the shape, size 
and distribution of solid phase particles formed during 
the hydrodispersion of targets. The distribution of 
particles of the materials under consideration by size in 
the investigated volume of the suspension was 
determined (Table 3). 

 
Table 2 

 

Results of experimental studies  
on the suspension production 

 

Target material: Copper (Cu) 
Pressure P, MPa …………………….. 200 350 
Target weight before processing m, g.. 138.67 139.04 

Target mass after processing m1, g …. 138.63 138.67 
Suspension temperature, °С ……….... 54.0 73.0 
Diameter of the material removed  
from the target, mm ……………….... 18 18 
Jet speed at the nozzle exit, m/s …….. 447 592 
Working fluid consumption, l/min …. 4.7 6.3 
Power, kW ………………………….. 45 60 
Mass of the carried material, g ……… 0.040 0.460 

Target material: Silver (Ag) 
Target weight before processing m, g.. 69.62 72.29 

Target mass after processing m1, g …. 69.38 69.62 
Suspension temperature, °С ………… 55.6 78.4 
Jet speed at the nozzle exit, m/s …….. 447 592 
Working fluid consumption, l/min ….. 4.7 6.3 
Power, kW ………………………….. 45 60 
Mass of the carried material, g ……… 0.240 2.670 

Table 3 
 

Analysis results of the geometric parameters  
of the microparticles of the material after ultra-jet 

hydraulic action on them 
 

Size Number Number  
of particles, % 

Average area  
in the considered 

range, μm2 over, μm2 up to, μm2

Target material – Silver 

0 9000 69 89,60 2184 

9000 18000 6 7,80 12974 

18000 27000 0 – – 

27000 36000 1 1,30 28608 

36000 45000 1 1,30 41418 

Target material – Copper  

0 2500 136 85,50 816 

2500 5000 17 10,50 3556 

5000 7500 4 2,48 5363 

7500 10000 0 – – 

10000 12500 1 0,62 11962 

12500 15000 3 1,90 13117 
 

The following main conclusions were drawn from 
the results of the experiments on ultra-jet suspension. 

1. Changes in technological conditions and modes 
of ultra-jet suspension significantly affect the mass 
concentration of the final product. In particular, it was 
found that ultra-jet suspension at high pressure  
(350–400 MPa) of the hydraulic system by an order of 
magnitude increases the concentration of target 
materials in the liquid, which was also revealed when 
using “soft” targets (Cu, Ag) instead of steel plates 
St45 (Fig. 10). 

2. The shape, size and development of the particle 
surface significantly depends on the physical and 
mechanical characteristics of the sample material. 

3. The fractional composition of the solid phase of 
suspensions obtained by ultra-jet technology is very 
different, which obviously can affect their functional 
properties. 

Considering the results of previous studies  
[21–23], it can be assumed that the broad capabilities of 
ultra-jet suspension technologies for varying the input 
and output processing parameters will allow a very 
flexible approach to solving a wide variety of specific 
problems, such as, for example, increasing the 
physicochemical activity of the suspension, low 
temperature sterilization,, changes in pH, changes in 
microbiological and other vitological properties, etc. 
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