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Abstract: Catalysts of carbon monoxide oxidation were synthesized by deposition of platinum on titanium nitride (TiN).
Two substrates with an average particle size of 18 and 36 nm were obtained by hydrogen reduction of titanium
tetrachloride in a stream of microwave plasma of nitrogen. The surface of the catalysts was studied by X-ray photoelectron
spectroscopy (XPS). The data obtained by us in the present work indicate the presence of oxynitride as a transition layer
between nitride and oxide. It was found that the CO oxidation rate on the 9-15 wt. % Pt loaded TiN catalysts is 120 times
higher than that on the platinum black with a specific surface of 30 m’- g_l. Increase in the reaction rate of CO oxidation on
Pt/TiN catalysts as compared to platinum black can be associated with both an increase in the concentration of CO
molecules adsorbed and a decrease in the activation energy of the reaction. Catalysts are promising for use in catalytic air
purification systems.
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AnHotanmsa: KaTanu3aTopbl OKHCIIEHHMsST MOHOOKCHAA YIJIepOoJa CHHTE3UPOBAaHbl HAHECEHHEM IUIATHHBl Ha
rtazmoxumuueckuid HuTpua turaa (TiN). IMopomkm TiN co cpemuum pasmepoM dactul 18 m 36 HM moOJydeHBI
BOJIOPOJHBIM BOCCTAHOBIEHHUEM TETPAXJIOPUAA TUTAHA B MOTOKE MHKPOBOIHOBOM a30THOM ma3Mbl. [loBepxHOCTH
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KaTaln3aTopoB HCCIENOBalach METOIOM PEHTTEHOBCKOW (oTo3IeKTpoHHON crekTpockormuu (PDIC). Anamms
MOJTyYSHHBIX MaTEPHaIOB YKa3bIBaeT HAa HAJHMYHE OKCHHUTPHIA KaK MEPEXOJHOTO CIIOSI MEXIY HUTPHIOM M OKCHIOM Ha
MOBEPXHOCTH KaTanm3atopoB. OOHapyxkeHO, 4To ckopocTh okucieHuss CO Ha xatamm3atopax TiN ¢ moGaBkoi
9—15 mac. % Pt B 120 pa3 Bellle, yeM Ha MJIATHHOBOM Ca)ke C yJENbHOW MOBEPXHOCTHIO 30 M/r IIPU KOMHaTHOM
TeMmepaTrype. YBelIn4eHue ckopoctu peakuuu okucieHus CO Ha karammzaropax Pt/TiN mo cpaBHEHHIO ¢ IIATHHOBOM
Ca)kell MOKEeT OBITh CBSI3aHO KaK C YBEJIMYEHHEM KOHLEHTPALMH ancopOupoBaHHbIX Moiiekysl CO, Tak U ¢ yMEHbILIEHHEM

OHCPruu aKTHUBAllUM PCAKIHU.
KaTaJIUTHYECKOM OYNCTKU BO3ayXa.

KiaroueBble cioBa: HUTpUJA THUTAHA,

HOJ’Iy‘IeHHI)IG KaTajin3aToOpPbI

karanmmzatop Pt/TiN;

NEPCICKTUBHBL U1  HUCIIOJIB30BAHUA B CHCTEMaAX

okucnenne CO; peHTreHOBCKas (HOTODIEKTPOHHAS

CIICKTPOCKOMHUA; PEHTTCHOIPAMMBI,; ITPOCBEUMBAIONIAA JICKTPOHHAST MUKPOCKOIIHA.
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1. Introduction

Investigations and improvements of indoor air
purification using heterogeneous photocatalytic
oxidation have been devoted to a number of studies
[1-6]. TiO; is commonly used as the photocatalyst in
photocatalytic oxidation (PCO) reaction [6-10].
However, not all gases are effectively oxidized by
UV irradiation on pure titanium dioxide. In particular,
the photocatalytic method of air purification from
carbon monoxide gas (CO) on pure titanium dioxide
is ineffective. Titanium nitride (TiN) is widely used
due to its hardness, high electrical conductivity,
corrosion resistance and high melting point [11-13],
as well as decorative properties, since its reflection
spectrum is very similar to the reflection spectrum of
gold [14-17]. Recently, TiN has been used as
a catalyst (electrocatalyst) for the oxygen reduction
reaction [18-23], as well as a substrate for M/TiN
catalysts, where M is a metal [24-31].

Catalytic oxidation of CO has received
considerable attention due to its wide applications in
exhaust gas after-treatment, CO oxidation for proton
exchange membrane fuel cells and air purification
systems. In the scientific literature, a huge number of
works are devoted to the catalytic oxidation of CO
(see, for example, publications [32-—40] and
references to them). Our attention in this paper is
devoted to low-temperature oxidation of CO in
catalytic air purification systems. We note
immediately that the term “low-temperature
oxidation” is rather a tribute to the tradition, which
originates from the work of Haruta et al. [41], who
reported that Au can be a highly active catalyst for
the oxidation of CO at temperatures below 0 °C.
In principle, it is desirable to have catalysts in the air
purification systems of residential premises that work
effectively at room temperature (15-25 °C).

In this report, we present data on the synthesis
and the study of the properties of Pt/TiN catalysts for
efficient room-temperature CO oxidation. Nano-sized

TiN powder obtained by hydrogen reduction of
titanium tetrachloride in a stream of nitrogen plasma
was used as a substrate for the preparation of
catalysts [42-43]. The study of the properties of
catalysts in the oxidation of CO, which is contained
in air at low concentrations (less than 100 mg-mﬁ3) at
295 K, showed that the CO oxidation rate on the
9-15 wt. % Pt loaded TiN catalysts is 120 times
higher than that on the platinum black with a specific
surface of 30 mz'g_l.

2. Materials and methods
2.1. Titanium Nitride Synthesis

Titanium nitride powders were obtained by
hydrogen reduction of titanium tetrachloride in a
stream of microwave plasma of nitrogen at
atmospheric pressure. A mixture of titanium
tetrachloride vapors with hydrogen in the required
ratio was introduced into a plasma nitrogen stream
with a mass-average temperature of about 3000 K,
obtained in a plasmatron using a microwave
generator with a frequency of 2450 MHz and
a maximum useful power of 5 kW.

The average particle size of the obtained
powders was controlled by changing the flow rate of
TiCly, which was 0.1 g-min71 in obtaining TiN
powder with an average particle size of 18 nm and
0.25 g-rninf1 in obtaining a powder with a particle
size of 36 nm. The plasma-forming nitrogen
consumption was 4 m>h”'  and hydrogen
consumption was 0.5 m>h " in both cases. Chemical
interaction of reagents and condensation of titanium
nitride nanoparticles occurred in a tubular reactor
with a diameter of 50 mm and a length of 250 mm,
the inner walls of which were lined with quartz.
The titanium nitride particles formed in the reactor
after cooling the stream were separated from the gas
phase by filtration on a bag filter.
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The average particle size of titanium nitride was
determined from the results of measuring the specific
surface of the powders by low-temperature
adsorption of molecular nitrogen (BET method).
The particle size ! was calculated by the formula

S¢s = 6/(Ip), where Sy, is the specific surface of the
powder, p is the specific density of titanium nitride.

2.2. Catalyst preparation

To obtain a catalyst, an aqueous solution of
H,PtClg-6H,O (1072-m01'L71) was mixed with an
aqueous solution of LiCOOH (0.04-0.1 mol‘L_l) at
20 °C. Then, TiN was ultrasonically dispersed in
water at 60 °C, followed by the addition of the
required amount of Pt in the form of an
H,PtClg/LiCOOH mixture. A similar method was
described in detail earlier [30].

After the induction period (8—15 min), platinum
clusters precipitate on the surface of titanium nitride.
Then, after keeping the solution for 24 h at room
temperature, the catalyst was washed with distilled
water (5—6 times) from the reaction products.

The washed catalyst was dried at a temperature
of 80 °C for 24 h. Then, partial reduction of platinum
clusters was carried out in a CO—N; atmosphere
(volume fraction of CO was 10 %) at a temperature
of 90 °C for 4 h. Two catalysts K18 and K36 with
a platinum content of 12 wt. % were selected as the
main objects of study. TiN with a particle size of
(18+2) and (36 = 2) nm was used as a substrate in
the K18 and K36 catalysts.

2.3. Samples characterization

The surface areas of the TiN samples were

obtained from N, sorption isotherms measured at 77 K
on QUADRASORB S/ Analyzer (Quantachrome
Instruments). X-ray patterns were recorded using
a DRON ADP-2-02 diffractometer using Cu Ka
radiation (A=0.154056 nm). JEOL JEM 2100
electronic transmission microscope was used to study
the structure and composition of Pt/TiN catalysts.
Analytical scale Acculab ALC-80d4 was used to
weigh the reagents and samples.

The XPS spectra were obtained using a Specs
PHOIBOS 150 MCD electron spectrometer with an
Mg cathode (hv=1253.6 eV). The vacuum in the
spectrometer chamber did not exceed 4 x 10°® Pa.
The spectra were recorded in the constant
transmission energy mode (40 eV for survey spectra
and 10 eV for individual lines). The survey spectrum
was recorded in 1.00 eV increments, while the
spectra of individual lines were recorded in 0.03 eV

increments. Background subtraction was carried out
according to the Shirley method [44], and spectra
decomposition was performed according to the set of
mixed Gaussian/Lorentz peaks in the framework of
the Casa XPS 2.3.19 software. For quantitative
estimates, we used the table values of specific
densities (4.24 g-cmﬁ3 for TiO, and 5.44 g-cmﬁ3
for TiN), as well as the following values of

photoelectron escape depths [45]: A = kTTigg =3.08 nm,

Ay = AT, = 1.73 nm.

2.4. Method for the study of catalytic properties

The kinetics of CO oxidation in air on the
catalyst was studied according to the method
described in detail earlier [46]. In brief, the test
chamber was purged for 600 s with a gas mixture of
carbon monoxide (150 mg-m%) and air at a speed of
50 cm’s Then, the inlet and outlet valves of the
test chamber were closed and the air/gas mixture
pump located in the test chamber was turned on,
ensuring the circulation of the gas mixture through
the catalyst at a speed of 30 cm’ss |, After reducing
the concentration of CO due to the catalytic reaction
to the level of 100 mg-m_3, a digital stopwatch was
turned on and the readings of the sensors were
recorded. The test chamber with a volume of 300 cm’
is equipped with NAP-505 CO sensor (Nemoto),
MSH optical sensor CO, - P/COy/NC/5/V/P
(Dynament), humidity sensor and temperature sensor
SHT75 (Sensirion).

3. Results and Discussion

3.1. Titanium Nitride

Due to the great practical interest, there are
many publications in the literature devoted to TiN,
including investigation by XPS method [47-54].
However, the interpretation of experimental data
obtained by XPS is somewhat different for different
authors. This conclusion relates primarily to
quantitative estimates, which is connected both with
different ways of subtracting the background in the
XPS spectra and with the complexity of the object
itself.

The fact is that titanium nitride exists as
a homogeneous phase over a relatively wide range of
compositions and has a tendency to oxidation.
The composition and structure of the oxidized layer
on the surface of titanium nitride depends on both the
preparation method and storage conditions, and on
the particle size.
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Fig. 1 shows a survey spectrum of one of the
samples of plasma-chemical titanium nitride (36 nm).
We note immediately that the spectra of other
samples are not fundamentally different from those
given. Table 1 lists the elemental content (in atomic
percent) in the layer analyzed by XPS (2—4 nm).
It is seen that the nitride particles are covered with a
thick layer of contamination, the origin of which is
associated with the high activity of titanium nitride
nanoparticles and the conditions of their sufficiently
long storage in air. The presence of silicon and sulfur
in the sample we associate with the features of the
technology for producing titanium nitride.

We analyze the shape of the spectra of Ti2p and
Nls. It is known that the Ti2p spectrum of an
individual titanium compound is a spin-orbit doublet,
which is described by two peaks (Ti2py,, and Ti2p3/;)
with an intensity ratio of 1 : 2 and a distance between
the peaks of 5.7 eV [55].

The experimental spectrum of Ti2p our titanium
nitride is well described by 6 peaks or 3 doublets
(Fig. 2) corresponding to titanium in nitride (1),
oxynitride (2) and oxide (3). The positions and
relative intensities of the Ti2p3/, peaks are shown in
Table 2.

XPS intensity /arb. units

T T T T T T ) T L 1

1000 800 600 400 200 0
Binding energy /eV

Fig. 1. Survey XPS spectrum of the TiN

Table 1. The XPS composition of the samples
under study

XPS intensity /arb. units

470 468 466 464 462 460 458 456 454 452 450
Binding energy /eV

Fig. 2. The Ti2p XPS spectrum of the titanium nitride

Table 2. Peak positions, full width at half-maximum
(FWHM) and intensities of the Ti2ps/, peaks
obtained by decomposing the Ti2p spectra
of the samples under study. The designation
of the parameter “d ” see in the text

Sample Peak E, ev FWHM,eV L% d, nm
1 455.7 1.8 15.1
. 3.7
TiN 2 4573 1.7 6.9 (1.33)
3 459.0 1.8 44.7
1 456.1 2.0 30.3
1.6
K18 2 457.6 1.6 11.2 0.71)
3 459.1 1.7 25.1
1 455.8 1.9 29.4
1.5
K36 2 457.4 1.7 13.1 (0.67)
3 458.9 2.1 24.1

Composition (at. %)

Sample
C N (0] Pt Si Ti S
TiN (36 nm) 588 63 233 - 25 71 18
K36 759 1.8 154 04 12 49 >0.1
K18 543 56 265 09 02 123 >0.1

The thickness of the oxide film d can be
calculated by a simple formula (see, for example,
[34]):

I [T.i02 GT@Oz nT.iOZ Tipz '

2o r T T T foo(a/ami02 1), )

I, Iy Oty AT MTi
1 Ti2p Ti2p "Ti Ti2p

where /1 and /3 are the intensity of the peaks given in
Table 2, orip 1s the ionization cross section of Ti2p

AT02 g the depth of Ti2p

level, Ti2p
photoelectrons from the oxide layer on the surface of
the nitride.

Formula (1) for nanoparticles gives an
overestimated value of d (Table 2), since it is derived

escape
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for a flat infinite sample coated with an oxide film,
and does not take into account the contributions to the
intensity /3 of the oxide film from the side surfaces of
the TiN nanoparticles.

The calculation of the intensities /; and I3,
carried out for a cubic nanoparticle of titanium nitride
coated on all sides with an oxide layer (/ is the edge
of the TiN cube, d is the thickness of the oxide layer
on it), assuming that the emission of photoelectrons is
recorded in the direction perpendicular to one of the
faces of the cube, give the following expressions:

B 2 TN _TiN,TiN
I =(1-2d) otigp 117 Mrigp X

X [exp(— d / kTTigp )] [exp(— d / XTTigg )] ; 2

I =0t nOi5%; [P ~-ay expl-d/235%: )}

3)

The estimate of the values of d by Eqs (2) and
(3) gives the values of 0.71 and 0.67 nm for K18 and
K36, respectively. These estimates are shown in
Table 2 in parentheses. Note that the calculation by
formulas (2) and (3), in accordance with the
simplifications carried out, gives underestimated
values of the oxide layer thickness.

In the spectrum of Nls (Fig. 3), in addition to
the main peak related to nitrogen in the mononitride
lattice (Ep=397.1 eV) (see, for example, [47, 55]),
we can distinguish also 2 peaks with £,=399.2 and
401.6 eV (Table 3). According to the literature data
[56, 57], the peak with Ep=399.2 eV can be
associated with nitrogen atoms in the lattice of the
oxynitride Ti(N,O). The peak with £, = 401.6 eV in
the literature is often attributed to molecular nitrogen
[57-59], which is formed during the oxidation of
nitride. However, in the XPS spectra of transition
metal (M) complexes with molecular nitrogen
(M—N5) the Nls line is split into 2 peaks [60—64].
If we assume that N is coordinated in the same way
as in a binuclear complex (M—N—N—M), then the
value of E; (N1s) should be the same as for the exo
atom of the mononuclear complex, i.e. below the
specified value by at least 1 eV. In our opinion, the
origin of the peak with E;, = 401.6 eV is still
questionable. Moreover, many authors do not note
this peak in the XPS spectra of the samples of
titanium nitride studied by them. In our opinion, the
adsorbed NO molecules, nitrogen atoms in the TiO,
lattice and N1s photoelectrons from nitride nitrogen,
which have lost some of their energy to the excitation
of electron transitions from the conduction band to
the free band, can contribute to photoemission in the
region near 401.6 eV.

XPS intensity /arb. units

406 404 402 400 398 396 394 392
Binding energy /eV

Fig. 3. The N1s XPS spectrum of the titanium nitride

Table 3. Positions, half-widths and intensities
of peaks obtained by decomposing the N1s spectra
of the initial titanium nitride and catalysts

Sample Peak Ey, eV FWHM, eV 1, %
1 397.1 23 71.3

TiN 2 399.2 2.5 19.3

3 401.6 2.8 9.2

1 397.1 2.0 18.1

K18 2 399.4 2.6 80.1
3 401.6 1.9 1.7

1 397.1 2.7 30.8

K36 2 399.4 23 61.4
3 401.6 2.7 7.7

Thus, the particles of initial titanium nitride are
covered with a rather thick film of titanium oxide,
which contains nitrogen atoms. Between the nitride
and the oxide on its surface is a thin layer of
oxynitride.

The stability of bulk samples of titanium nitride
in an oxidizing environment is well known. It is clear
that the density of titanium atoms in TiO, is
noticeably lower than that in TiN (data on the specific
density of TiO; and TiN are given above). Therefore,
TiO, on the surface of TiN cannot serve as a
protective film preventing diffusion of oxygen to
titanium nitride. However, many authors claim that
the oxide film on the surface of titanium nitride
consists of pure TiO, [65, 66].
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The data obtained by us in the present paper and
earlier [67—69] indicate on the presence of oxynitride
as a transition layer between nitride and oxide. It is
this layer that is the barrier preventing the oxidation
of nitride. This data also coincides with the
conclusions of Ref. [70].

3.2. Catalysts

The contents of elements (in atomic percent) in
the near-surface layer of catalysts are presented in
Table 1. It can be seen that, as in the initial TiN, a
rather thick hydrocarbon film is present on the
catalyst surface (high carbon content). The reasons
for the appearance of hydrocarbon contamination of
the surface are listed above. It can be noted that in the

process of preparing catalysts, the [N/Ti]y ratio,
calculated from the integrated intensities of the Nls
and Ti2p lines, decreases by a factor of 2.

The results of decomposition of the XPS spectra
of Ti2p catalysts are presented in Table 2. It can be
seen that the ratio of /3//; in catalysts is lower than
that in the initial titanium nitride. Consequently, the
thickness of the oxide film on the surface of TiN in
the catalyst is less than that in the initial TiN.
The question arises, how could this happen?

It can be assumed that the reduction of surface
titanium oxide also occurred during the reduction of
platinum. However, then the second question arises —
in what form is the reduced part of the titanium oxide
film present in the catalyst? Obviously, if the
reduction to metal occurred, then contact with air will
again lead to oxidation of the metal and formally
nothing should change. It seems to us that the
increase in the [3/I; ratio is caused by ultrasonic

XPS intensity /arb. units

4(|)6 ' 4(I)4 ' 4(|)2 ' 4(I)0 ' 358 l 3;36 l 3€|)4 ' 3$I32 l
Binding energy /eV
Fig. 4. The N1s XPS spectrum of catalyst K32

XPS intensity /arb. units

Binding energy /eV

Fig. 5. The Pt4f XPS spectrum of K32 catalyst after
treatment with carbon monoxide

mixing and subsequent washing with water during the
deposition of platinum. In these operations, the top
friable layer of the oxide film can be mechanically
destroyed and the separated fine oxide particles were
removed from the sample during washing. Analyzing
the data of Table 2, it should also be noted that the
intensity of peak 2 (/7) in the catalysts is higher than
that in the initial sample.

On the N1s spectrum (Fig. 4) of the catalyst, the
main peak is the peak with E,=399.2 eV.
A synchronous increase in the intensities from the
oxynitride layer in the N1s and Ti2p spectra means
that the influence of this surface layer on the
electronic properties of the surface has increased
significantly.

The direct contact of platinum with oxinitride
cannot be excluded either, since the oxide layer does
not have to be continuous. Consequently, the
properties of the contact between the catalytically
active metal (Pt) and the substrate in the catalyst
under study differ significantly from the Pt/TiO,
contact.

The spectrum of Pt4f is well described by two
doublets Pt4f;, and Ptdfs, (Fig. 5), one of which,
with Ej, (Pt4f7p) = 71.4 eV, corresponds in its
position to metallic platinum, the second (with
E, (Ptdfsn) =743 eV) — Pt*" oxide. It should be
noted here that the treatment of the catalyst with
carbon monoxide does not lead to the complete
reduction of platinum.

We also note here that the intensity of the Pt4f
line is noticeably lower than would be expected from
the assumption of a homogeneous distribution
of 12 mass. % platinum (Table 1).
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Fig. 6. The X-ray patterns of TiN and K18 and K36 catalysts

If we recalculate the surface composition of
catalysts from atomic percent to mass, given in this
Table, then, of course, the proportion of platinum will
increase, however, for both studied catalysts, it will
remain less than 12 mass %. The reason for this may
be that the platinum particles connect several support
particles to each other. Such a design naturally
suppresses the output of Pt4f photoelectrons. For the
system of platinum on TiO;, the phenomenon of
strong metal-support interaction (SMSI) is often
observed when the metal is covered with an oxide
film [71-73].

3.3. X-ray patterns

It was found that the titanium nitride obtained by
us has a NaCl type lattice. After deposition of
platinum, the lattice parameter of titanium nitride
does not change.

Fig. 6 shows the diffraction patterns of catalysts.
First, we note that the values of the full-width at half
maximum (FWHM) of the reflex Pt (111) in the
X-ray patterns of the samples under study are more
than those for TiN (111). This means that the sizes of
platinum clusters are smaller than the particle sizes of
the substrate. Using Scherrer’s equation, the width of
the Pt(111) line gives the coherence length L. = 8 nm

for K18. For K36 L. =12 nm.

Fig. 7 shows a surface image of catalyst K18.
It can be seen that platinum clusters with a size of
4-5 nm are present on the surface of titanium nitride
particles. However, the distribution of platinum
clusters cannot be called uniform. In the figure, you

Fig. 7. The TEM image of Pt clusters
on the surface of TiN (36 nm)

can see titanium nitride particles on which there are
no Pt clusters. The presence of a large number of
platinum clusters on some particles of titanium nitride
and their absence on other particles of titanium
nitride leads to a decrease in the surface
concentration of platinum determined by the XPS
method.

3.4. Catalytic properties of Pt/TiN samples

With a decrease in the CO concentration in the
test chamber, an increase in the CO; concentration
occurs at the same time due to the irreversible
oxidation reaction of CO with air oxygen. As can be
seen from Fig. 8 the time dependence of the CO
concentration in the test chamber with a catalyst is
described by equation (4):

Cco(f) = Cco(0) e, 4)
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Fig. 8. The kinetics of CO oxidation
at 7=295 K, P =101 kPa and 30 % humidity on K18 (1),
K36 (2) catalysts and on Pt black (3)
(at the same platinum content in the samples)

where Cco(f) is the measured value of the
concentration of CO in the test chamber, Cco(0) is
the value of the concentration of CO at the initial
(zero) time, k is the reaction rate constant, ¢ is the
time.

From the experimental data shown in Fig. 8, it
was found that the reaction rate constant on K18 is
(120 + 20) times higher than that of Pt black with a
specific surface of 30 mz-gfl. It should also be noted
that the reaction rate constant on K18 is (1.5+0.1)
times higher than that on K36.

To study the effect of platinum content on
catalytic properties, five samples of a catalyst based
on titanium nitride with a particle size of 18 nm were
synthesized and tested (Table 4). The investigation of
the CO oxidation reaction of these samples was
carried out according to the procedure described
above.

Table 4. The dependence of the catalytic properties
of Pt/TiN on Pt content at =295 K, P =101 kPa,

RH =30 %.
s;\rlr(l)};le V/Vi»  Sample weight, g Px;;:‘;)lt’
1 0.90 0.050 6
2 0.95 0.033 9
3 1.00 0.025 12
4 0.95 0.020 15
5 0.70 0.012 25

When studying the catalytic properties, the mass
of the catalyst was changed depending on the
composition, leaving the same mass of platinum in
each sample equal to (3 £0.3) mg. The reaction rates
of CO oxidation for each sample were determined
after processing the experimental data in accordance
with equation (3). Then, the ratio of reaction rates
Vi/Vi» was determined, where Vi, is the CO
oxidation rate for a composition containing 12 mass
% of platinum with the maximum rate of oxidation of
CO, and V, — the rate of oxidation of CO for
a catalyst containing x mass % Pt. From the
experimental results presented in Table 4 it was found
that the oxidation rate of CO varies little when the
platinum content is in interval from 9 to 15 mass %.

To determine the adsorption properties of
platinum in the catalysts and in platinum black
(90 mg), the absorption of CO from the gas phase
was measured. The test chamber was flushed with dry
nitrogen at a rate of 50 cm’s ' for 100 s, and then

purged with a mixture of CO and N, for 5 s at a rate
of 50 cm’s . Then the inlet and outlet valves were
closed and after 10 min the content of the volume
fraction of CO was analyzed. For the analysis of CO,
3 cm’ samples were taken from the test chamber, and
then the sample was injected into a measuring
chamber filled with air. The number of CO molecules
adsorbed by the Pt surface per unit mass of platinum
was calculated by the formula (5):

Nco :(Cic _Cfc)Vo NA/(l()O mPtVM)s Q)

where C,. is the initial volume fraction of CO in %,
Cy

. 1s the final volume fraction of CO in %, V, is the

volume of the test chamber, Np is the Avogadro
number, mp; is the mass of platinum in the catalyst in

grams, Vy is the molar gas volume. The mass of the
catalyst was chosen so as to ensure the value of the
final concentration in the range from 0.45 to 0.55
of the initial volume fraction of CO equal to 1 %.

After processing the experimental results, it was
found that the ratio of Nco(Pt/TiN)/Nco(Pt — black)
is equal to (3.8 £ 0.4) for K18 and to (2.5 £ 0.3)
for K36. The measurements were carried out at
T=295K and P =101 kPa.

Thus, an increase in the reaction rate of CO
oxidation on Pt/TiN catalysts as compared to
platinum black can be associated with both an
increase in the concentration of CO molecules
adsorbed and a decrease in the activation energy of
the reaction. The reaction rate due to an increase in
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the concentration of CO molecules on the surface of
platinum increases by (3.8 + 0.4) times. Therefore,
the main reason for the increase in the reaction rate is
possible associated with a decrease in the activation
energy of the CO oxidation reaction. From the
Arrhenius equation, it follows that with an increase in
the reaction rate of (32 £ 5) times, the calculated
value of the decrease in the activation energy will be
from 8.1 to 8.5 kJ-moL " The reason for the decrease
in the activation energy can be, for example, the
formation of oxide layers of platinum on the surface
of the Pt cluster.

3.5. Comparison of the catalytic properties
of various nanoscale substrates

Table 5 shows the results of tests as substrates of
nanosized particles such as nanodiamonds (ND) of
the SDND (Plasmochem, Germany), B-SiC and TiN,
obtained by us by the plasma-chemical method, and
TiO, nanoparticles of the Hombicat (Sachtleben
Chemie GmbH, Germany) at the content of Pt in each
sample equal to (12 + 1) wt.%. The experimental
results were processed based on the equation (4).

The Cco(0) concentration for all samples
is 100 mg-m_3. The characteristics of the substrates
used are presented in Table 5.

Table 5 shows that nanocatalytic additives based
on TiN with a particle size of 18 nm have the
maximum rate of the CO oxidation reaction. We also
found that the rate of CO oxidation at room
temperature on this nanocatalytic additives is
120 times higher than that on platinum black with

. 2 -1
a specific surface area of 30 m”~-g .

Table 5. Comparative characteristics
of nanoparticles and the ratio k(x)/k(TiO3)
for a catalyst with a platinum content of 12 wt. %

Substrate ND B-SiC TiO, TiN TiN
Substrate Diamond Sphalerite Anatase NaCl NaCl
structure
Particle size, 5+1 13£1 6+1 3614 182
nm
Ratio 0.7+£0.1  1.0£0.1 1.0 1.0£0.1 1.5+0.1
k(x)/k(TiOy)

4. Conclusions

New catalysts of carbon monoxide oxidation
were synthesized by deposition of platinum on
titanium nitride with an average particle size of
18 and 36 nm. It was established that:

1) as a result of catalyst synthesis, the oxide film
on the surface of titanium nitride is enriched with
nitrogen, and its thickness decreases;

2) surface content of Pt is less than volume
content;

3) treatment of the catalyst with carbon
monoxide does not lead to the complete reduction of
platinum.

The catalytic properties of Pt/TiN samples in the
oxidation of CO at room temperature and low
CO concentrations (less than 100 mg-mﬁ3) have been
studied. It was found that the CO oxidation constant
rate per atom of platinum on the 9-15 wt. % Pt
loaded TiN catalysts is 120 times higher than that on
the platinum black with a specific surface of 30 mz-gfl.

The developed Pt/TiN catalyst is promising for
further research in order to be used in catalytic and
photo-catalytic air purification devices at low CO
concentrations.
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