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Abstract: The proposed review represents the systematic analysis of modern methods and approaches for the
characterization and structural evaluation of fluorinated polymers that have found a wide application as materials for
chemical processing, chemically resistant components and coatings, pharmaceutical and electrical packaging, biomedical
equipment, etc. The chemical composition of the polymers (fluorine content, its distribution inside the fluorinated
materials, chemical bonds, presence of oxygen-containing groups) substantially influences on the operation properties
(chemical resistance, adhesive, cohesive, optical, dielectrical, thermal, barrier, gas permeation) of the final polymeric
products. Hence, it was of particularly importance to bond the emergence of specific features with the presence of fluorine
in the chemical structure of polymer by means of related analytical techniques. Namely, we focused on spectral
(IR, UV-VIS, NMR, XPS, EPR), chemical (elemental analysis), Secondary-ion mass spectroscopic (SIMS) and
microscopic (AFM, SEM-EDX) methods emphasizing their general consideration and limitations as well as application for
the in-depth characterization.
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Annoranusi: [Tpeanaraemsiii 0030p npezcraBisier co00i CHCTEMATHYECKUH aHAIN3 COBPEMEHHBIX METOIOB U IOJX0JI0B
K XapaKTEPUCTUKE U OLIEHKE CTPYKTYPhI (PTOPUPOBAHHBIX NOJIMMEPOB, KOTOPHIE HAIIUIN IIUPOKOE MPUMEHEHHE B Ka4eCTBE
MaTepHaNIOB ISl XUMHYECKHX IIPOLECCOB, XMMUYECKH CTOMKMX KOMIIOHEHTOB M NOKPBITHH, (apMaleBTHYECKOW WU
JIEKTPUUECKOI YNaKoBKH, OMOMEIUIMHCKOTO O0OpyIOBaHHMS M T.I. XHMHUYECKMH COCTaB IOJMMEPOB (COJEepiKaHHe
dTopa, ero pacnpexneneHre BHyTpH (HPTOPUPOBAHHBIX MATEPHATIOB, XUMHUYECKUE CBS3H, HAIMYNE KHCIOPOACOICPKAIINX
TPYTI) CYINIECTBEHHO BIMSAET HA AKCIUTyaTAallMOHHBIE CBOMCTBA (XMMHYECKas CTOHKOCTb, aATe3HMOHHBIC, KOT'€3HOHHBIC,
ONTHYECKHE, TUIIEKTPUIECKHE, TEPMUIECKHE, OapbepHbIe, ra30Basi IPOHUIIAEMOCTh) KOHEUHBIX MOJIMMEPHBIX MPOIYKTOB.
CrnenoBaTenbHO, OCOOCHHO Ba)XKHO CBSI3aTh MOSBJICHHE CHENU(UIECKUX OCOOEHHOCTEW ¢ MPHUCYTCTBHEM (TOpa B XUMHU-
4ECKOW CTPYKTYype€ MOJMMEPa C MOMOIIBIO COOTBETCTBYIOIIMX AHAIUTHYECKUX METOJOB. A MMEHHO, COCPEIOTOUYMINCH
Ha cnekTpanbHbiX (MK, YO-suaumas, IMP, XPS, DI1P), xumudeckux (3JIMEHTHBINM aHAIN3), MACC-CIIEKTPOCKOMTUIECKUX
(BUMC) u mukpockonunueckux (ACM, SEM-EDX) meronax, paccMaTpiBasi X OCHOBHBIE BO3MOXKHOCTH M OTPaHHYECHUS
JUIsl YTiIyOJIEeHHON XapaKTepUCTHKU (TOPCOAEPIKAIIMX ITOJTHUMEPOB.
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1. Introduction

Fluorine-containing polymers (FPs) are popular
and irreplaceable products of large-scale chemistry.
World production of fluorinated polymers in 2010
amounted to more than 200,000 tons, in 2012 —
223,000 tons, while by 2022 it is predicted to double
(to 405,000 tons) [1]. The high global demand for
FPs is due to a unique combination of properties:
chemical, electrochemical and thermal stabilities,
oxygen resistance, low surface energy, low
coefficient of friction, low high frequency-loss rates,
low refractive indices, low permittivity etc. [1-4].
Such attractive macroscopic parameters of FPs are
feasible owing to extremely high energy of C—F
bond (478 kJ -moLﬁl) for ordinary bonds and a lowest
energy of intermolecular interactions (a solubility

parameter of the perfluorinated compounds
corresponds to ca. 12-13 (J 'cm_3)1/2 whereas for the

common hydrocarbons it does to 14-15 (J'cm%)l/z.

FPs are indispensable in many branches of science
and technology: electronics [5, 6], energy [7-13],
biomedical application [14, 15], membranes [16-21],
coatings [22-25], — as materials for wire and cable
insulation, industrial, architectural and multilayer
barrier coatings, fuel tubing, hoses and fittings, seals,
lighting, solar panels, automotive and mass transit
cabling, optical fibers, etc. [1, 2, 26]. During the
development and fabrication of the materials, it is
extremely important to control the structure and
composition of the resulting product. In this regard,
the aim of this review is to consider and describe the
methods for analysis of the structure and composition
of FPs and changes associated with fluorination
process. In order to maintain the operation properties
of the products it is often sufficient to have a thin
fluorinated layer over the material. Therefore,
polymeric materials that are fluorinated by elemental
fluorine in the gas- or liquid-phase regime are in the
scope of the FPs under consideration. Such materials
have a laminate structure with gradient of fluorine
concentration along the normal to the surface.
The thickness of the fluorinated layer usually is about
several microns. The probing of these composite
materials is also the aim of the review.

2. Materials and methods

2.1. Elemental analysis

The quantity of fluorine introduced to the
material after direct fluorination can be estimated by
combustion of sample in the Schoniger apparatus [27]
and trapping of the combustion products in the
absorbing solution. In the case of fluorination of
polypropylene [28] and poly(p-phenylene
terephthalamide) [29], Maity et al. absorbed those
products by mixture based on Ce(Ill) nitrate solution
and the excess of the reagent was titrated by
ethylenediamine tetraacetate. Despite the simplicity
of the instrumental implementation, the oxygen flask
technique  faces  problems of  incomplete
decomposition of highly fluorinated polymers and
formation low molecular volatile compounds
(tetrafluoromethane and others) which are not trapped
in absorbing solutions. Here, the chemical resistance
of fluorine-containing materials that is mostly
provided by high dissociation energy of C—F bond
(ca. 485 kJ -moLﬁl) becomes their weakness. In order
to improve fluorine recovery, Hruska and Lepot have
decomposed the fluorinated polypropylene film with
sodium peroxide [30] while Fan et al. performed the
oxygen flask combustion with catalyst (WO3+ Sn)
[31]. Further detection of fluorine was performed by
fluoride selective electrode [30, 32].

A standard CHNSO method of high temperature
combustion of sample in a stream of pure oxygen can
be applied for indirect estimation of fluorine in the
polymers. The fluorine content in a polymer
assembled from the elements (carbon, hydrogen,
nitrogen sulfur and oxygen) may be calculated as a
residual weight after subsequent quantitative
detection of the elements. This technique is a rapid,
simple and low-cost analysis and has been
successfully used for investigation of surface
fluorinated conventional polyolefins [33-35] and
other  fluorine-containing  polymers  [36-38].
However, it also suffers from underestimation of
carbon content due to the formation of thermostable
low molecular fluorinated compounds in the
combustion region [39].
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2.2. Spectroscopic techniques
2.2.1. IR spectroscopy

Infrared spectroscopy is a traditional routine
analytical technique that allows conducting structural
analysis of both surface and bulk of polymeric
materials. Each functional group absorbs infrared
radiation at particular frequency. Three regions
(13,500-4,000 cm ' (near infrared), 4,000-400 cm '
(middle infrared) and 400-10 cm’! (far infrared))
compose the whole infrared range. Infrared spectrum
of a polymer is an individual set of specific
absorption bands that can be utilized to make
polymer identification in “finger print” region
[40—43]. Since fluorine-containing polymers, in
particular perfluorinated polymers, are often solids
and weakly soluble in organic solvents, among the
wide diversity of infrared analytical procedures
(transmission, specular reflection, multiple internal
reflection, diffuse reflection, photoacoustic etc. [43]),
attenuated total reflectance technique is the most
popular one and allows one to measure samples
rapidly without destruction and complicated
preliminary preparation. Another advantage of the
procedure is ability to vary the depth d, of

penetration of IR radiation. It can be calculated as

follows [44]:

A
d = s

p 2
. m
2mn, [sin? 0 —| —
ny

where A and 0 are wavelength and angle of incidence
of IR radiation; n,n, are refractive indices of

a polymer ATR-crystal,

and an respectively.

The refractive indices of polymers and ATR-crystals
belong to a narrow ranges of values: 1.3-1.8 for
polymers, 2.2-4.0 for ATR-crystals (ZnSe 2.4,
ZnS 2.2, Silicon 3.4, Ge 4.0, diamond 2.4) [44, 45].
Therefore, the variation of ATR-crystals and angle of
incidence allows one to analyze polymers on the
depths up to 0.7-15 um which is comparable with the
thicknesses of the fluorinated polymeric layers
[46, 47].

The ATR-IR technique was applied for
investigation of the most fluorinated polymers (for
instance, epoxy resin [48], silicone rubber [49, 50],
UHMWPE [51], LDPE, HDPE, PP, PET [52], wood
samples [53], etc.). The main characteristic
absorption bands for fluorine-containing polymers
and composites are presented in Table 1.

IR-spectroscopy also enables to perform in situ
monitoring of fluorination process by means of IR-
transparent beryllium window in the reactor’s wall.
So, gradual conversion of —CH,— group of LDPE
into —CHF— and —CF,— was detected by shift of
absorption band from 1,100 to 1,200 cm’! [58, 63].

2.2.2. UV-Vis interferometry

Interferometry in the ultraviolet-visible region
(UV-Vis) has been applied for investigation of
polymers since mid-to-late XXth century [64]. The
technique is based on the analysis of the interference
spectrum of the UV-visible light reflected from the
layers in the sample at different depths. Kharitonov et
al. suggested using the procedure for estimation of
depth of fluorination [65]. In the case of thin layers,
the thickness of the fluorinated layer is determined
via interference of the UV-Vis light having passed
through the sample and reflected twice from the

Table 1. Specific absorption bands for fluorine-containing polymers and composites

Functional group

-1
Wavenumber, cm

Reference

C—F (general) (str*)

—CF; (str¥) 1,350-1,120
—CFy— (str¥) 1,280-1,120
—CF (aliphatic) (str*) 1,100-1,000
—~CF (aromatic) (str*) 1,270-1,100
—C(O)F (str*) 1,800-1,900
Si—F (str*) 850

* Stretch vibration.

1,200; 1,147; 554, 509

[31, 44, 51, 52, 54-57]
[44]
[44, 57]
[44, 57, 58]
[44]
[55, 59-61]
[62]
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fluorinated layer. This procedure can be realized
when the fluorinated and non-fluorinated layers are
separated by very thin boundary layer (not more than
one fourth of light wavelength) and the boundary
layer is parallel to the surface of the sample [34].
If the fluorinated polymer is not sufficiently
transparent for UV-Vis light, the interference spectra
can be measured in the reflection mode by changing
the angle of incidence by 45°. The approach allows
estimating fluorination depth from 0.1 to 50 um and
performing in situ measurements of thickness of the
fluorinated layer during the fluorination process [34].
It was applied for investigation of kinetics of
fluorinated layer growth for various polymers:
UHMWPE [66], HDPE [47, 67], PS [34], PET, PI,
PPO, PVTMS [46, 68], PTFE [46], PEEK-WC [61],

etc. Refractive indices n,? for the conventional

polymers vary in the range of 1.49—1.66 while n? for
the fluorinated layers of these polymers are within
1.35-1.41 (Table 2). The minimum difference
between refractive indices of virgin and fluorinated
layers for proper application of the technique should
be higher than 0.03-0.05.

The thickness of the fluorinated layer can be
calculated based on the following equation:

1

ZnIQAv ’

SF:

where Av (cmﬁl) is an interval (a difference in
wavenumbers) between neighboring maxima or
minima in transmission spectra [65]. For most cases
of gas-phase fluorination by elemental fluorine, the
time dependence of the thickness as well as the total
amount of fluorinated groups was shown to be
proportional to the square root of fluorination time
tr [66]. This fact proves that (i) the fluorinated

polymeric film consists of fluorinated and virgin

Table 2. Refractive indices of virgin (n? )

and fluorinated (n? ) polymer layers estimated via
UV-Vis technique

Polymer n{/) nf
PS [34] 1.590 1.366
PET [46,68] 1.655 1.380
Matrimid5218 [46, 68] 1.63 1.41
PPO [46, 68] - 1.373-1.381
PVTMS [46, 68] 1.492 1.376

layers separated by very thin (<< 0.1 um) boundary
where the most chemical reactions take place and
(ii) the rate of generation of fluorinated layer results
from diffusion of fluorine through the modified layer
to the untreated one.

2.2.3. NMR-spectroscopy

Nuclear magnetic resonance is a routine tool of
investigation of chemical structure of polymers.
The elements having magnetic momentum (for
instance, 1H, 3H, 13C, 15N, 19F, 29Si, 3p and others)
can be tested by NMR technique. Each atom
possesses a unique chemical shift relatively to
a standard, depending on electronic structure of
a nucleus, atoms bonded with this atom, spatial
environment, etc. Exhaustive data on the chemical
structure of a polymer can be obtained on the basis of
chemical shift and spin-spin coupling parameters
[69—72]. A wide range of procedures of NMR are
currently available but among them NMR of samples
in deuterated solvents and magic angle spinning
NMR (MAS NMR) are most spread. The former
approach has a drawback associated with a weak
solubility of fluorinated polymers in most of the
solvents. While the latter (MAS NMR) allows
measuring of NMR spectra of solid samples that has
promoted a wide application of this technique
in analysis of fluorinated polymers. Trichlorofluoro-
methane is often chosen as internal standard while
1,1,2-trichloro-1,2,2-trifluoroethane (5('°F) = —68.05,
—72.20 ppm), trifluoroacetic acid (6(19F) =-78.4 ppm),
Co6F6 (6(19F) =-163 ppm), sodium trifluoromethane
sulfonate (5('’F)=-80.8 ppm), PTFE (5("°F)=
=—122 ppm) and others [53, 57, 66, 73—76] are used
as external standards for correction of chemical shifts
of fluorine nuclei. The NMR is a sufficiently
sensitive method and enables an estimation of the
fluorination degree for the fluorinated polymers via
ratio of signals from different functional groups
(Table 3). It also allows calculating average
molecular mass of a polymer by the ratio of side
functional groups to the amount of polymer units
according to the corresponding chemical shifts of
atom nuclei [53, 57, 58, 66, 77-81]. An example of
the NMR analysis of highly fluorinated polymer is
provided for long-term liquid-phase fluorination of
poly(2,6-dimethylphenylene oxide-1,4) powder in
pefluorodecalin (PFD) [82]. The product of the
fluorination =~ was  soluble in PFD and
perfluorobenzene, and was shown by standard 19F,
Bc NMR approaches to have
poly(perfluorocyclohexenyl ether) [82].

structure of
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Table 3. Specific chemical shifts of "F and °C in various functional groups

Functional group Chemical shift of 19F, ppm

Chemical shift of °C, ppm

References

CF —144,-138,-200
CF; -122

CF3 -80

SCF, —114,-118

OCF, —78,-80, -85
CF,SOsF 44-45 (from SO,F group)

100-103 [66, 75, 76, 79]
107.8
[53, 66, 75, 76, 79]
118.3
112 [75, 76]
116.8 [75, 76, 83]
112-114 [83]

2.2.4. X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy is a high
demand technique to investigate chemical
composition of polymeric surface [42, 84, 85].
The method is based on photoelectron effect when
electrons are emitted from the sample due to its
exposition to mild X-ray radiation of specific energy
(Mg or Al Ko radiation source with 2-20 keV).
Analysis of the amount and energy of the
photoelectrons allows estimating the content of
elements (except hydrogen) and nature of their bonds
since the binding energy of the electron with nucleus
(i) has unique characteristic value for each element
and (ii) depends on the electron environment of the
element and can be shifted if it is bound to an element
having different electronegativity (Table 4) [42, 86].
The signal of aliphatic carbon in the chemical group
—CH,— with energy as high as 284.5-285.0 eV is

often utilized as internal standard. The XPS technique
also allows investigating the sample surface within
the thickness up to 5-7 nm [86]. The depth of the
layer analyzed also results from the angle of
incidence of X-ray beam. So, the fluorine atom
(F1s, 686—689 eV) can be detected on the depths of
ca. 0.8 nm (at 80°), 3.4 nm (at 45°) and 4.8 nm (at 0°)
in the case of non-monochromatic anode radiation
Mg Ko, and on the depths of ca. 1.1 nm (at 80°),
4.5 nm (at 45°) and 6.3 nm (at 0°) in the case of
monochromatic anode radiation Mg Ko [86, 87].
XPS approach has high sensitivity (ca. 0.1 %) and
good spatial resolution (ca. 2-—5 pm) that enables
element and its bonds mapping over the surface and
depth of the sample [42, 84-90]. XPS was effectively
applied in the series of investigations by Cheng et al.
[54, 91, 92], Nazarov et al. [35, 52, 93], and other
researchers [67, 81, 94-96].

Table 4. The specific binding energies of electron in carbon and fluorine atoms
of F-containing functional groups

Functional piece

Chemical shift, eV

(—CHF—CH,—),

Cis: 287.91 [97, 98], 288 [99] (CF); 285.7 [97, 99] (CHa)

Fis: 686.94 [97], 689.3 [99] (F)

(—CF,—CHy—),

Cis: 290.9 [97-99] (CF»); 286.44 [97], 286.3 [99] (CHa)

Fis: 688.15 [97]; 689.6 [99] (F)

(—CF,—CFy—),

Cis: 292.48 [85, 97-99] (CF,)

Fis: 689.67 [97], 690.2 [99], 689.7 [85] (F)

(—CFH—CFH—),

Cis: 288.4 [99, 100] (CF)

Fis: 689.3 (F) [100]

(—CF,—CFH—),

Cis: 291.6 (CF); 289.3 (CFH) [97, 98]

Fis: 690.1 (F) [97]

CF;—CH,—0O—
CF3—CF,— (perfluorinated polymers)
(—CH2CH(OC(O)CF3)—),

Cis: 292.2 (CF3) [98]
Cis: 295.6 (CF3), 291.3 (CF>) [98]
Cis: 292.65 (CF3) [97]

Fis: 688.15 (F) [97]
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2.3. Microscopic methods

The AFM technique is based on monitoring of
the polymeric surface by a cantilever, and detection
of energy of its interaction with the surface.
The method possesses high resolution along the
thickness and the width of the surface that enables to
perform 2D and 3D morphological analysis of the
polymeric layers. Hardness, electroconductivity,
adhesive and magnetic properties, roughness can be
estimated in a pointwise manner. The analysis can be
performed in various media (vacuum, air, inert gases,
liquids) allowing to study influence of media
composition on surface properties of polymer [42].
The technique was applied in investigation of surface
morphology of polymers and composite materials
after fluorination elsewhere [52, 101-103].

Scanning electron microscopy (SEM) is a widely
applicable technique to test a surface of polymeric
samples. The method is based on scanning of sample
surface by a focused primary electron beam resulting
in emission of secondary electrons. The intensity of
secondary electrons depends on atomic number of the
element: the higher the number is the larger intensity
of the electrons becomes. The method allows testing
the topology, morphology and crystallographic nature
of the samples [104]. For instance, for the majority of
polymers (UHMWPE, LDPE, PPTA, PET, PP, fir
wood, etc.), an increase in roughness was observed
[53, 52, 96]. By means of this technique, An et al.
estimated nanoparticle size distribution and
roughness of the surface of high temperature
vulcanized composites made of silicone rubber and
nanosilica [50].

It is worth noting that SEM has been applied for
estimation of depth of fluorination by preparation and
analysis of cross-section of the polymeric films
[48, 50, 105, 106]. Moreover, SEM is often combined
with energy dispersive X-ray spectroscopy (EDXS).
During the measurement, spectra of energy of X-ray
emission after exposure of the sample to electron or
X-ray beam are recorded. Each atom has a unique
configuration of electrons and, hence, has a specific
spectrum of X-ray emission. Thus, the SEM-EDXS
coupling allows one to perform quantitative and
qualitative elemental analysis (hydrogen excluded) of
polymeric surface [107, 108]. Wirti et al. showed that
surface concentration of C-F bonds achieved 2.5 %
after treatment of Kevlar fibers by hydrofluoric acid
[109]. A uniformity of the surface fluorination of
polymers was also demonstrated elsewhere [31, 48,
51,59, 95, 110].

2.4. Other techniques for analysis of structure
of fluorine-containing polymers

The secondary ion mass spectrometry became
widely used in polymer testing in the late twentieth
century [111-114]. The method is based on
bombardment of polymer surface by primary ions
(for instance, Xe+, Cs+, Ga+) resulting in ionization
and desorption of monoatomic layers (formation of
secondary ions) that allows carrying out analysis of
elemental and molecular composition within
thickness as large as 5 A [86]. So, time-of-flight
procedure of SIMS has detected the following
molecular ions in the chemical structure of
fluorinated polymers: CF;—, CyFs, C3F7;, CHF,,
CHOF4, CH,OFs, SiF, C7H,Fs ', CsHoFs ', CsHyFs',
C9H4F5+, CisHsFqo, etc [115-118]. In addition, the
SIMS technique is often used for estimation of depth
of fluorination, its uniformity [119-120] and
distribution of fluorine-containing additives over the
sample [115, 121, 122].

Oppositely, electron paramagnetic resonance
(EPR) can be considered as a non-destructive method
for detection of paramagnetic species (point defects,
free radical, biradicals, transition metal ions, etc.)
[123, 124]. For the polymers after contact with
elemental fluorine, the presence of long-lived radicals
was proved by EPR technique [63, 125, 126].
Peyroux et al. showed that during fluorination of LDPE
the following radical structures formation took place:
—CF—C F—CFH— and —CF—C H—CF,—.
Their intensities decreased after the exposure to air
due to attack of oxygen resulting in the formation of
peroxide radicals and subsequent oxidation [58, 63,
102, 125].

A combination of the aforementioned chemical,
spectroscopic, spectrometric and other techniques for
estimation of chemical structure and morphology of
the fluorinated materials (polymers, layers) expands
the insight into the interaction of the polymers with
elemental fluorine comprehensively.

3. Results and Discussion

The range of techniques, which can be applied
for the characterization and structure evaluation of
fluorinated polymers, highlight the complex character
of surface fluorination and necessity to use various
chemical and physical approaches for the study.
The fluorination of surface layers determines the
apparent changes in the chemical composition,
morphology, spectroscopic properties and surface
features. Thus, the full characterization of polymers
should be provided especially in case of polymers for
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the specific applications. UV-Vis spectroscopy is
excellent for in situ control of thickness of the
fluorinated layers and provided the general
information about optic properties. The chemical and
morphological analysis of cross-section and surface
of the fluorinated layers can be conducted using XPS,
AFM, SEM, SIMS approaches. Finally, chemical
analysis can be performed by flask combustion
method, CHNSO analysis, NMR, XPS, SIMS.
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