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Abstract: The proposed review represents the systematic analysis of modern methods and approaches for the 
characterization and structural evaluation of fluorinated polymers that have found a wide application as materials for 
chemical processing, chemically resistant components and coatings, pharmaceutical and electrical packaging, biomedical 
equipment, etc. The chemical composition of the polymers (fluorine content, its distribution inside the fluorinated 
materials, chemical bonds, presence of oxygen-containing groups) substantially influences on the operation properties 
(chemical resistance, adhesive, cohesive, optical, dielectrical, thermal, barrier, gas permeation) of the final polymeric 
products. Hence, it was of particularly importanсe to bond the emergence of specific features with the presence of fluorine 
in the chemical structure of polymer by means of related analytical techniques. Namely, we focused on spectral  
(IR, UV-VIS, NMR, XPS, EPR), chemical (elemental analysis), Secondary-ion mass spectroscopic (SIMS) and 
microscopic (AFM, SEM-EDX) methods emphasizing their general consideration and limitations as well as application for 
the in-depth characterization. 
 
Keywords: fluorinated polymers; X-ray photoelectron spectroscopy (XPS); nuclear magnetic resonance spectroscopy 
(NMR); secondary-ion mass spectroscopic (SIMS); atomic force microscopy (AFM); scanning electron microscopy 
(SEM); energy dispersive X-ray (EDX); infrared (IR) analysis. 
 
For citation: Ivanov AA, Belov NA. Fluorinated polymers: evaluation and characterization of structure and composition. 
Journal of Advanced Materials and Technologies. 2021;6(2):144-155. DOI: 10.17277/jamt.2021.02.pp.144-155 

 
 

Фторированные полимеры:  
оценка, характеристика структуры и состава 

 
А. А. Ивановa , Н. А. Беловa,b  

 

a Национальный исследовательский Томский политехнический университет,  
пр. Ленина, 30, Томск 634050, Российская Федерация, 

b Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук, 
 Ленинский пр., 29, Москва 119991, Российская Федерация 

 
 ivanovaa@tpu.ru 

 
Аннотация: Предлагаемый обзор представляет собой систематический анализ современных методов и подходов  
к характеристике и оценке структуры фторированных полимеров, которые нашли широкое применение в качестве 
материалов для химических процессов, химически стойких компонентов и покрытий, фармацевтической и 
электрической упаковки, биомедицинского оборудования и т.д. Химический состав полимеров (содержание 
фтора, его распределение внутри фторированных материалов, химические связи, наличие кислородсодержащих 
групп) существенно влияет на эксплуатационные свойства (химическая стойкость, адгезионные, когезионные, 
оптические, диэлектрические, термические, барьерные, газовая проницаемость) конечных полимерных продуктов. 
Следовательно, особенно важно связать появление специфических особенностей с присутствием фтора в хими-
ческой структуре полимера с помощью соответствующих аналитических методов. А именно, сосредоточились  
на спектральных (ИК, УФ-видимая, ЯМР, XPS, ЭПР), химических (элементный анализ), масс-спектроскопических 
(ВИМС) и микроскопических (АСМ, SEM-EDX) методах, рассматривая их основные возможности и ограничения 
для углубленной характеристики фторсодержащих полимеров. 
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1. Introduction 
 

Fluorine-containing polymers (FPs) are popular 
and irreplaceable products of large-scale chemistry. 
World production of fluorinated polymers in 2010 
amounted to more than 200,000 tons, in 2012 – 
223,000 tons, while by 2022 it is predicted to double 
(to 405,000 tons) [1]. The high global demand for 
FPs is due to a unique combination of properties: 
chemical, electrochemical and thermal stabilities, 
oxygen resistance, low surface energy, low 
coefficient of friction, low high frequency-loss rates, 
low refractive indices, low permittivity etc. [1–4]. 
Such attractive macroscopic parameters of FPs are 
feasible owing to extremely high energy of C—F 
bond (478 kJ⋅moL–1) for ordinary bonds and a lowest 
energy of intermolecular interactions (a solubility 
parameter of the perfluorinated compounds 
corresponds to ca. 12–13 (J⋅cm–3)1/2 whereas for the 
common hydrocarbons it does to 14–15 (J⋅cm–3)1/2. 
FPs are indispensable in many branches of science 
and technology: electronics [5, 6], energy [7–13], 
biomedical application [14, 15], membranes [16–21], 
coatings [22–25], – as materials for wire and cable 
insulation, industrial, architectural and multilayer 
barrier coatings, fuel tubing, hoses and fittings, seals, 
lighting, solar panels, automotive and mass transit 
cabling, optical fibers, etc. [1, 2, 26]. During the 
development and fabrication of the materials, it is 
extremely important to control the structure and 
composition of the resulting product. In this regard, 
the aim of this review is to consider and describe the 
methods for analysis of the structure and composition 
of FPs and changes associated with fluorination 
process. In order to maintain the operation properties 
of the products it is often sufficient to have a thin 
fluorinated layer over the material. Therefore, 
polymeric materials that are fluorinated by elemental 
fluorine in the gas- or liquid-phase regime are in the 
scope of the FPs under consideration. Such materials 
have a laminate structure with gradient of fluorine 
concentration along the normal to the surface.  
The thickness of the fluorinated layer usually is about 
several microns. The probing of these composite 
materials is also the aim of the review. 

2. Materials and methods 
 

2.1. Elemental analysis 
 

The quantity of fluorine introduced to the 
material after direct fluorination can be estimated by 
combustion of sample in the Schoniger apparatus [27] 
and trapping of the combustion products in the 
absorbing solution. In the case of fluorination of 
polypropylene [28] and poly(p-phenylene 
terephthalamide) [29], Maity et al. absorbed those 
products by mixture based on Ce(III) nitrate solution 
and the excess of the reagent was titrated by 
ethylenediamine tetraacetate. Despite the simplicity 
of the instrumental implementation, the oxygen flask 
technique faces problems of incomplete 
decomposition of highly fluorinated polymers and 
formation low molecular volatile compounds 
(tetrafluoromethane and others) which are not trapped 
in absorbing solutions. Here, the chemical resistance 
of fluorine-containing materials that is mostly 
provided by high dissociation energy of C—F bond 
(ca. 485 kJ⋅moL–1) becomes their weakness. In order 
to improve fluorine recovery, Hruska and Lepot have 
decomposed the fluorinated polypropylene film with 
sodium peroxide [30] while Fan et al. performed the 
oxygen flask combustion with catalyst (WO3 + Sn) 
[31]. Further detection of fluorine was performed by 
fluoride selective electrode [30, 32]. 

A standard CHNSO method of high temperature 
combustion of sample in a stream of pure oxygen can 
be applied for indirect estimation of fluorine in the 
polymers. The fluorine content in a polymer 
assembled from the elements (carbon, hydrogen, 
nitrogen sulfur and oxygen) may be calculated as a 
residual weight after subsequent quantitative 
detection of the elements. This technique is a rapid, 
simple and low-cost analysis and has been 
successfully used for investigation of surface 
fluorinated conventional polyolefins [33–35] and 
other fluorine-containing polymers [36–38]. 
However, it also suffers from underestimation of 
carbon content due to the formation of thermostable 
low molecular fluorinated compounds in the 
combustion region [39]. 
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2.2. Spectroscopic techniques 
 

2.2.1. IR spectroscopy 
 

Infrared spectroscopy is a traditional routine 
analytical technique that allows conducting structural 
analysis of both surface and bulk of polymeric 
materials. Each functional group absorbs infrared 
radiation at particular frequency. Three regions 
(13,500–4,000 cm–1 (near infrared), 4,000–400 cm–1 
(middle infrared) and 400–10  cm–1 (far infrared)) 
compose the whole infrared range. Infrared spectrum 
of a polymer is an individual set of specific 
absorption bands that can be utilized to make 
polymer identification in “finger print” region  
[40–43]. Since fluorine-containing polymers, in 
particular perfluorinated polymers, are often solids 
and weakly soluble in organic solvents, among the 
wide diversity of infrared analytical procedures 
(transmission, specular reflection, multiple internal 
reflection, diffuse reflection, photoacoustic etc. [43]), 
attenuated total reflectance technique is the most 
popular one and allows one to measure samples 
rapidly without destruction and complicated 
preliminary preparation. Another advantage of the 
procedure is ability to vary the depth pd  of 
penetration of IR radiation. It can be calculated as 
follows [44]: 
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where λ and θ are wavelength and angle of incidence 
of IR radiation; 21,nn  are refractive indices of  
a polymer and an ATR-crystal, respectively.

 The refractive indices of polymers and ATR-crystals 
belong to a narrow ranges of values: 1.3–1.8 for 
polymers, 2.2–4.0 for ATR-crystals (ZnSe 2.4,  
ZnS 2.2, Silicon 3.4, Ge 4.0, diamond 2.4) [44, 45]. 
Therefore, the variation of ATR-crystals and angle of 
incidence allows one to analyze polymers on the 
depths up to 0.7–15 μm which is comparable with the 
thicknesses of the fluorinated polymeric layers  
[46, 47].  

The ATR-IR technique was applied for 
investigation of the most fluorinated polymers (for 
instance, epoxy resin [48], silicone rubber [49, 50], 
UHMWPE [51], LDPE, HDPE, PP, PET [52], wood 
samples [53], etc.). The main characteristic 
absorption bands for fluorine-containing polymers 
and composites are presented in Table 1. 

IR-spectroscopy also enables to perform in situ 
monitoring of fluorination process by means of IR-
transparent beryllium window in the reactor’s wall. 
So, gradual conversion of —CH2— group of LDPE 
into —CHF— and —CF2— was detected by shift of 
absorption band from 1,100 to 1,200 cm–1 [58, 63]. 
 

2.2.2. UV-Vis interferometry 
 

Interferometry in the ultraviolet-visible region 
(UV-Vis) has been applied for investigation of 
polymers since mid-to-late XXth century [64]. The 
technique is based on the analysis of the interference 
spectrum of the UV-visible light reflected from the 
layers in the sample at different depths. Kharitonov et 
al. suggested using the procedure for estimation of 
depth of fluorination [65]. In the case of thin layers, 
the thickness of the fluorinated layer is determined 
via interference of the UV-Vis light having passed 
through the sample and reflected twice from the  
 

 
Table 1. Specific absorption bands for fluorine-containing polymers and composites 

 

Functional group Wavenumber, cm–1 Reference 

С—F (general) (str*) 1,200; 1,147; 554, 509 [31, 44, 51, 52, 54–57] 

—CF3 (str*) 1,350–1,120 [44] 

—CF2— (str*) 1,280–1,120 [44, 57] 

—CF (aliphatic) (str*) 1,100–1,000 [44, 57, 58] 

—CF (aromatic) (str*) 1,270–1,100 [44] 

—C(O)F (str*) 1,800–1,900 [55, 59–61] 

Si—F (str*) 850 [62] 

* Stretch vibration. 
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fluorinated layer. This procedure can be realized 
when the fluorinated and non-fluorinated layers are 
separated by very thin boundary layer (not more than 
one fourth of light wavelength) and the boundary 
layer is parallel to the surface of the sample [34].  
If the fluorinated polymer is not sufficiently 
transparent for UV-Vis light, the interference spectra 
can be measured in the reflection mode by changing 
the angle of incidence by 45°. The approach allows 
estimating fluorination depth from 0.1 to 50 µm and 
performing in situ measurements of thickness of the 
fluorinated layer during the fluorination process [34]. 
It was applied for investigation of kinetics of 
fluorinated layer growth for various polymers: 
UHMWPE [66], HDPE [47, 67], PS [34], PET, PI, 
PPO, PVTMS [46, 68], PTFE [46], PEEK-WC [61], 
etc. Refractive indices D

Vn  for the conventional 

polymers vary in the range of 1.49–1.66 while D
Fn  for 

the fluorinated layers of these polymers are within 
1.35–1.41 (Table 2). The minimum difference 
between refractive indices of virgin and fluorinated 
layers for proper application of the technique should 
be higher than 0.03–0.05. 

The thickness of the fluorinated layer can be 
calculated based on the following equation: 

 

νΔ
=δ

D
F

F
n2

1
, 

 

where Δν (cm–1) is an interval (a difference in 
wavenumbers) between neighboring maxima or 
minima in transmission spectra [65]. For most cases 
of gas-phase fluorination by elemental fluorine, the 
time dependence of the thickness as well as the total 
amount of fluorinated groups was shown to be 
proportional to the square root of fluorination time 

Ft  [66]. This fact proves that (i) the fluorinated 
polymeric film consists of fluorinated and virgin  
 

Table 2. Refractive indices of virgin ( D
Vn )  

and fluorinated ( D
Fn ) polymer layers estimated via 

UV-Vis technique 
 

Polymer D
Vn  D

Fn  

PS [34] 1.590 1.366 
PET [46,68]  1.655 1.380 
Matrimid5218 [46, 68]  1.63 1.41 
PPO [46, 68] – 1.373–1.381 
PVTMS [46, 68] 1.492 1.376 

layers separated by very thin (<< 0.1 µm) boundary 
where the most chemical reactions take place and  
(ii) the rate of generation of fluorinated layer results 
from diffusion of fluorine through the modified layer 
to the untreated one. 
 

2.2.3. NMR-spectroscopy 
 

Nuclear magnetic resonance is a routine tool of 
investigation of chemical structure of polymers.  
The elements having magnetic momentum (for 
instance, 1H, 3H, 13C, 15N, 19F, 29Si, 31P and others) 
can be tested by NMR technique. Each atom 
possesses a unique chemical shift relatively to  
a standard, depending on electronic structure of  
a nucleus, atoms bonded with this atom, spatial 
environment, etc. Exhaustive data on the chemical 
structure of a polymer can be obtained on the basis of 
chemical shift and spin-spin coupling parameters 
[69–72]. A wide range of procedures of NMR are 
currently available but among them NMR of samples 
in deuterated solvents and magic angle spinning 
NMR (MAS NMR) are most spread. The former 
approach has a drawback associated with a weak 
solubility of fluorinated polymers in most of the 
solvents. While the latter (MAS NMR) allows 
measuring of NMR spectra of solid samples that has 
promoted a wide application of this technique  
in analysis of fluorinated polymers. Trichlorofluoro-
methane is often chosen as internal standard while 
1,1,2-trichloro-1,2,2-trifluoroethane (δ(19F) = –68.05, 
–72.20 ppm), trifluoroacetic acid (δ(19F) = –78.4 ppm), 
C6F6 (δ(19F) = –163 ppm), sodium trifluoromethane 
sulfonate (δ(19F) = –80.8 ppm), PTFE (δ(19F) = 
= –122 ppm) and others [53, 57, 66, 73–76] are used 
as external standards for correction of chemical shifts 
of fluorine nuclei. The NMR is a sufficiently 
sensitive method and enables an estimation of the 
fluorination degree for the fluorinated polymers via 
ratio of signals from different functional groups 
(Table 3). It also allows calculating average 
molecular mass of a polymer by the ratio of side 
functional groups to the amount of polymer units 
according to the corresponding chemical shifts of 
atom nuclei [53, 57, 58, 66, 77–81]. An example of 
the NMR analysis of highly fluorinated polymer is 
provided for long-term liquid-phase fluorination of 
poly(2,6-dimethylphenylene oxide-1,4) powder in 
pefluorodecalin (PFD) [82]. The product of the 
fluorination was soluble in PFD and 
perfluorobenzene, and was shown by standard 19F, 
13C NMR approaches to have structure of 
poly(perfluorocyclohexenyl ether) [82]. 
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Table 3. Specific chemical shifts of 19F and 13C in various functional groups 
 

Functional group Chemical shift of 19F, ppm Chemical shift of 13C, ppm References 

CF –144, –138, –200 100–103 [66, 75, 76, 79]  
CF2 –122 107.8 

[53, 66, 75, 76, 79] 
CF3 –80 118.3 
SCF2 –114, –118 112 [75, 76]  
OCF2 –78, –80, –85 116.8 [75, 76, 83] 
CF2SO2F 44–45 (from SO2F group) 112–114 [83] 
 

2.2.4. X-ray photoelectron spectroscopy (XPS) 
 

X-ray photoelectron spectroscopy is a high 
demand technique to investigate chemical 
composition of polymeric surface [42, 84, 85].  
The method is based on photoelectron effect when 
electrons are emitted from the sample due to its 
exposition to mild X-ray radiation of specific energy 
(Mg or Al Kα radiation source with 2–20 keV). 
Analysis of the amount and energy of the 
photoelectrons allows estimating the content of 
elements (except hydrogen) and nature of their bonds 
since the binding energy of the electron with nucleus 
(i) has unique characteristic value for each element 
and (ii) depends on the electron environment of the 
element and can be shifted if it is bound to an element 
having different electronegativity (Table 4) [42, 86]. 
The signal of aliphatic carbon in the chemical group 
—CH2—   with energy as high as 284.5–285.0 eV is  

often utilized as internal standard. The XPS technique 
also allows investigating the sample surface within 
the thickness up to 5–7 nm [86]. The depth of the 
layer analyzed also results from the angle of 
incidence of X-ray beam. So, the fluorine atom  
(F1s, 686–689 eV) can be detected on the depths of 
ca. 0.8 nm (at 80°), 3.4 nm (at 45°) and 4.8 nm (at 0°) 
in the case of non-monochromatic anode radiation 
Mg Kα, and on the depths of ca. 1.1 nm (at 80°),  
4.5 nm (at 45°) and 6.3 nm (at 0°) in the case of 
monochromatic anode radiation Mg Kα [86, 87].  
XPS approach has high sensitivity (ca. 0.1 %) and 
good spatial resolution (ca. 2–5 µm) that enables 
element and its bonds mapping over the surface and 
depth of the sample [42, 84–90]. XPS was effectively 
applied in the series of investigations by Cheng et al. 
[54, 91, 92], Nazarov et al. [35, 52, 93], and other 
researchers [67, 81, 94–96]. 

 
Table 4. The specific binding energies of electron in carbon and fluorine atoms  

of F-containing functional groups 
 

Functional piece Chemical shift, eV 

(—CHF—CH2—)n C1s: 287.91 [97, 98], 288 [99] (CF); 285.7 [97, 99] (CH2) 
F1s: 686.94 [97], 689.3 [99] (F) 

(—CF2—CH2—)n C1s: 290.9 [97–99] (CF2); 286.44 [97], 286.3 [99] (CH2) 
F1s: 688.15 [97]; 689.6 [99] (F) 

(—CF2—CF2—)n C1s: 292.48 [85, 97–99] (CF2) 
F1s: 689.67 [97], 690.2 [99], 689.7 [85] (F)  

(—CFH—CFH—)n  C1s: 288.4 [99, 100] (CF) 
F1s: 689.3 (F) [100] 

(—CF2—CFH—)n  C1s: 291.6 (CF2); 289.3 (CFH) [97, 98] 
F1s: 690.1 (F) [97] 

CF3—CH2—O— C1s: 292.2 (CF3) [98] 
CF3—CF2— (perfluorinated polymers) C1s: 295.6 (CF3), 291.3 (CF2) [98] 

(—CH2CH(OC(O)CF3)—)n  C1s: 292.65 (CF3) [97] 
F1s: 688.15 (F) [97] 
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2.3. Microscopic methods 
 

The AFM technique is based on monitoring of 
the polymeric surface by a cantilever, and detection 
of energy of its interaction with the surface.  
The method possesses high resolution along the 
thickness and the width of the surface that enables to 
perform 2D and 3D morphological analysis of the 
polymeric layers. Hardness, electroconductivity, 
adhesive and magnetic properties, roughness can be 
estimated in a pointwise manner. The analysis can be 
performed in various media (vacuum, air, inert gases, 
liquids) allowing to study influence of media 
composition on surface properties of polymer [42]. 
The technique was applied in investigation of surface 
morphology of polymers and composite materials 
after fluorination elsewhere [52, 101–103]. 

Scanning electron microscopy (SEM) is a widely 
applicable technique to test a surface of polymeric 
samples. The method is based on scanning of sample 
surface by a focused primary electron beam resulting 
in emission of secondary electrons. The intensity of 
secondary electrons depends on atomic number of the 
element: the higher the number is the larger intensity 
of the electrons becomes. The method allows testing 
the topology, morphology and crystallographic nature 
of the samples [104]. For instance, for the majority of 
polymers (UHMWPE, LDPE, PPTA, PET, PP, fir 
wood, etc.), an increase in roughness was observed 
[53, 52, 96]. By means of this technique, An et al. 
estimated nanoparticle size distribution and 
roughness of the surface of high temperature 
vulcanized composites made of silicone rubber and 
nanosilica [50]. 

It is worth noting that SEM has been applied for 
estimation of depth of fluorination by preparation and 
analysis of cross-section of the polymeric films  
[48, 50, 105, 106]. Moreover, SEM is often combined 
with energy dispersive X-ray spectroscopy (EDXS). 
During the measurement, spectra of energy of X-ray 
emission after exposure of the sample to electron or 
X-ray beam are recorded. Each atom has a unique 
configuration of electrons and, hence, has a specific 
spectrum of X-ray emission. Thus, the SEM-EDXS 
coupling allows one to perform quantitative and 
qualitative elemental analysis (hydrogen excluded) of 
polymeric surface [107, 108]. Wirti et al. showed that 
surface concentration of C-F bonds achieved 2.5 % 
after treatment of Kevlar fibers by hydrofluoric acid 
[109]. A uniformity of the surface fluorination of 
polymers was also demonstrated elsewhere [31, 48, 
51, 59, 95, 110]. 

2.4. Other techniques for analysis of structure  
of fluorine-containing polymers 

 

The secondary ion mass spectrometry became 
widely used in polymer testing in the late twentieth 
century [111–114]. The method is based on 
bombardment of polymer surface by primary ions 
(for instance, Xe+, Cs+, Ga+) resulting in ionization 
and desorption of monoatomic layers (formation of 
secondary ions) that allows carrying out analysis of 
elemental and molecular composition within 
thickness as large as 5  Å [86]. So, time-of-flight 
procedure of SIMS has detected the following 
molecular ions in the chemical structure of 
fluorinated polymers: CF3—, C2F5

–, C3F7
–, CHF2, 

CHOF4
–, CH2OF5

–, SiF, C7H2F5
+, C8H2F5

+, C8H4F5
+, 

C9H4F5
+, C15H3F10, etc [115–118]. In addition, the 

SIMS technique is often used for estimation of depth 
of fluorination, its uniformity [119–120] and 
distribution of fluorine-containing additives over the 
sample [115, 121, 122]. 

Oppositely, electron paramagnetic resonance 
(EPR) can be considered as a non-destructive method 
for detection of paramagnetic species (point defects, 
free radical, biradicals, transition metal ions, etc.) 
[123, 124]. For the polymers after contact with 
elemental fluorine, the presence of long-lived radicals 
was proved by EPR technique [63, 125, 126]. 
Peyroux et al. showed that during fluorination of LDPE 
the following radical structures formation took place: 
—CF2—C*F—CFH— and —CF2—C*H—CF2—. 
Their intensities decreased after the exposure to air 
due to attack of oxygen resulting in the formation of 
peroxide radicals and subsequent oxidation [58, 63, 
102, 125]. 

A combination of the aforementioned chemical, 
spectroscopic, spectrometric and other techniques for 
estimation of chemical structure and morphology of 
the fluorinated materials (polymers, layers) expands 
the insight into the interaction of the polymers with 
elemental fluorine comprehensively. 

 
3. Results and Discussion 

 

The range of techniques, which can be applied 
for the characterization and structure evaluation of 
fluorinated polymers, highlight the complex character 
of surface fluorination and necessity to use various 
chemical and physical approaches for the study.  
The fluorination of surface layers determines the 
apparent changes in the chemical composition, 
morphology, spectroscopic properties and surface 
features. Thus, the full characterization of polymers 
should be provided especially in case of polymers for 
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the specific applications. UV-Vis spectroscopy is 
excellent for in situ control of thickness of the 
fluorinated layers and provided the general 
information about optic properties. The chemical and 
morphological analysis of cross-section and surface 
of the fluorinated layers can be conducted using XPS, 
AFM, SEM, SIMS approaches. Finally, chemical 
analysis can be performed by flask combustion 
method, CHNSO analysis, NMR, XPS, SIMS. 
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