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Abstract: The increased attention of researchers to electrically conductive polymers, including polyaniline (PANI), is due 
to the wide possibilities of its use in the production of supercapacitors, energy storage devices, anticorrosive coatings, 
detectors, sensors, solar cells, antimicrobial materials, sorbents, and coatings that absorb electromagnetic radiation. 
However, the instability of the PANI properties during operation limits the practical use of the polymer. In this regard, to 
date, many attempts have been made to stabilize the characteristics and increase the service life of polyaniline. Thus, new 
composite materials, which combine PANI and one or more other components, including carbon nanomaterials (carbon 
nanotubes, graphene, graphene oxide, reduced graphene oxide, mesoporous carbon), montmorillonite, metals, 
chalcogenides, conductive polymers,were developed. The purpose of this study is to summarize the information 
accumulated to date on electrically conductive polyaniline and its composites with carbon nanomaterials (CNM), as well 
as to demonstrate their potential and future prospects. The paper describes the structure and properties of the polymer. 
Chemical and electrochemical approaches to the synthesis of PANI and composites based on it are considered, attention is 
paid to the influence of synthesis conditions on the structure and properties of the final reaction products. A brief 
description of the application of polyaniline and its composites with CNM is given. 
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Аннотация: Повышенное внимание исследователей к электропроводящим полимерам, в том числе к полианилину 
(ПАНИ), обусловлено широкими возможностями его применения при производстве суперконденсаторов, 
накопителей энергии, антикоррозионных покрытий, датчиков, сенсоров, элементов солнечных батарей, 
антимикробных материалов, сорбентов, покрытий, поглощающих электромагнитное излучение. Однако 
нестабильность свойств ПАНИ в ходе эксплуатации ограничивает практическое применение полимера. В связи  
с этим к настоящему времени предпринято множество попыток, позволяющих стабилизировать характеристики  
и увеличить срок службы полианилина. Например, разработаны новые композиционные материалы, сочетающие  
в себе ПАНИ и один или несколько других компонентов, среди которых углеродные наноматериалы (углеродные 
нанотрубки, графен, оксид графена, восстановленный оксид графена, мезопористый углерод), монтмориллонит, 
металлы, халькогениды, проводящие полимеры. Цель исследования – обобщить сведения, накопленные  
к настоящему времени об электропроводящем полианилине и его композитах с углеродными наноматериалами 
(УНМ), продемонстрировать их потенциал и будущие перспективы. Даны описания строения и свойств полимера. 
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Рассмотрены химические и электрохимические подходы к синтезу ПАНИ и композитов на его основе, уделено 
внимание влиянию условий синтеза на структуру и свойства конечных продуктов реакции. Дана краткая 
характеристика областей применения полианилина и его композитов с УНМ. 
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1. Introduction 
 

Since the discovery of polyaniline (PANI), 
which belongs to the class of electrically conductive 
polymers, to the present time there has been an 
increase in the number of studies related to this 
material. This is primarily due to the unique 
properties of PANI [1]. PANI belongs to the class of 
conjugated polymers, so it can have conductivity 
close to metallic. PANI is also distinguished by ease 
of synthesis and doping with protic acids, 
environmental stability and low cost [2–4]. However, 
changes in electrical conductivity during operation, 
low cyclic stability, mechanical degradation, and 
processing complexity significantly limit the practical 
use of the polymer [5, 6]. It is known that 
charge/discharge processes are accompanied by 
swelling, shrinkage and destruction of the polymer 
during doping/dedoping processes, which leads to a 
decrease in cycle stability. In addition, PANI 
degradation can occur at relatively high potentials. 
The consequence of this is the low operating potential 
of PANI electrodes. 

To eliminate the above defects, researchers 
usually combine polyaniline with other materials 
(carbon nanotubes (CNTs), graphene (G), graphene 
oxide (GO), cellulose, montmorillonite, metal 
oxides). As a result, new materials are obtained, 
which are characterized by increased capacitive 
characteristics and high chemical stability [7].  
For example, a PANI composite with carbon 
nanotubes, synthesized for use as an electrode 
material for a supercapacitor, demonstrates a fairly 
high specific capacitance of 1266 F⋅g–1, exceeding 
the capacitance of the original components [8].  
It has also been shown that PANI/CNT hybrids 
exhibit a synergistic effect [9]. 

On the one hand, the carbon dispersed carrier 
increases the accessible surface of PANI, on the other 
hand, it creates an electrically conductive frame, 
which makes it possible, by increasing electronic and 
ionic conductivity, to increase the electrical power 
removed from the electrode. Also, this framework is 
more rigid than PANI itself, which makes it possible 
to stabilize the porous structure of the polymer with 
multiple repetition of charge/discharge. 

The possibility of stabilizing the PANI 
properties by synthesizing composites based on it 
gives rise to a large number of studies on this topic, 
the results of which are reflected in both scientific 
and review articles. However, in the latter, there is 
mainly a generalization of the results obtained within 
specific areas of practical application of composites 
(for example, in supercapacitors, sorbents). With this 
approach, the effectiveness of the synthesized 
composites is demonstrated in only one area of 
application. There is also no systematic information 
on the dependence of the characteristics of 
composites on their composition. In this regard, this 
review summarizes the results accumulated to date in 
the field of preparation and characterization of PANI 
composites with carbon nanomaterials. Attention is 
paid to the influence of the mass composition of 
composites on their morphological and operational 
characteristics. A brief description of promising areas 
of application of these composites is presented.  
The review also provides information on the 
structure, properties and methods of producing PANI, 
which can be used by researchers to select optimal 
conditions for the synthesis of composites with given 
parameters. 

 
2. Chemical structure and properties  

of PANI 
 

PANI has the longest history of research among 
electrically conductive polymers. This polymer was 
discovered in the middle of the 19th century [10].  
It was then known as “aniline black” (a term in those 
days used for any product obtained by the oxidation 
of aniline). The discovery of PANI can probably be 
considered the experiments of Runge [11]. Later, 
Fritsche and Leteby continued to study the oxidation 
process of aniline and discovered a change in the 
color of the resulting precipitate [12–14]. The results 
obtained by scientists in the century before last 
served as a prerequisite for studying the process of 
obtaining “black aniline”, as well as for studying its 
redox and acid-base transformations. 
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(a) 

 
(b) 

 

Fig. 1. Molecular structure of various redox forms  
of linear aniline octamers, proposed  
at the beginning of the 20th century  

(a: x + y = 4, n = 1; leucoemeraldine: x = 4, y = 0; 
protoemeraldine: x = 3, y = 1; emeraldine: x = 2, y = 2; 

nigranilin: x = 1, y = 3; pernigraniline: x = 0, y = 4)  
and black aniline (b: z = 3) [15] 

 
The terms emeraldine and nigraniline were 

coined for the various oxidized/reduced forms of 
aniline black. At the beginning of the 20th century, the 
concepts “leucoemeraldine”, “protoemeraldine” and 
“pernigraniline” were introduced to designate linear 
combinations of aniline octamers with varying degrees 
of oxidation, i.e. with different numbers of N-phenyl-
benzoquinonediimine and 4-aminodiphenylamine 
fragments in the main chain (Fig. 1a) [15]. 

The molecular weight of PANI in the form of 
emeraldine is significantly higher than that of 
octamers, indicating the existence of intermediate 
oxidation states between leucoemeraldine and 
emeraldine (x > y, y ≥ 1, Fig. 1a), which could be 
designated as protoemeraldine, corresponding to 
x / y ~ 3, as well as between emeraldine and 
pernigraniline (x < y, x ≥ 1, Fig. 1a), which  
can be designated as nigraniline, as in the case  
of x / y ~ 1/3 [16]. 

In 1965, information that emeraldine has high 
conductivity appeared [17]. At the end of the last 
century, scientists discovered the possibility of 
transitioning from one form of PANI to another.  
For example, emeraldine can be converted from a 
base to a salt. This process is accompanied by a color 
change from blue to green (Fig. 2). Based on the 
results of these studies, a paper was published where 
it was reported that the transition of emeraldine to 
this state is accompanied by a sharp increase in 
conductivity by more than 10 orders of magnitude – 
up to 1–5 S⋅cm–1 [18]. 

Multiple studies conducted over the past decades 
allow us to conclude that the emeraldine salt of PANI 
(PANI-ES) contains localized/delocalized radical 
cations (polarons) and dications (bipolarons) in 
different proportions. Their content depends on the 
synthesis conditions and isolation procedures [19] 
(Fig. 2). 

The transition of PANI in the form of 
emeraldine base (PANI-EB) to PANI-ES is carried 
out using doping, which can be done in two ways: 
oxidation (p-doping, when the doping component 
accepts electrons) or reduction (n-doping - the doping 
component gives up electrons) neutral polymer with  
a modifying additive [4]. 

Proton donors, usually acids (hydrochloric, 
sulfuric, sulfonic acids, etc.) are used to dope PANI. 
The electrical conductivity of doped PANI can be 
influenced by a number of factors, including the 
oxidation state of the polymer, the type of protic acid, 
the degree of protonation, the moisture content  
of the polymer, and the morphology of the polymer 
chain [20]. 

 
3. Methods for obtaining PANI 

 

Currently, there are several methods for 
obtaining PANI. The most common one is the 
oxidative polymerization of aniline. There are 
chemical [21–24], electrochemical [25], and 
enzymatic [26] polymerization. 

During chemical synthesis in an acidic 
environment, the aniline monomer or salt (aniline 
hydrochloride or sulfate) is converted into  
a conjugated polymer. Distinctive features of this 
method are the high yield of the target reaction product 
(about 90–95 % of the theoretically calculated one), as 
well as the relatively high electrical conductivity  
(1–5 S⋅cm–1) of the synthesized material [4]. 

To date, significant experimental material has 
been accumulated on the relationship between the 
properties of PANI obtained by chemical 
polymerization and synthesis conditions. Among the 
synthesis parameters that most significantly influence 
the properties of the final product are the nature of 
the oxidizing agent, pH, concentration of reagents, 
and polymerization temperature [27, 28]. 

It is known that PANI can have different 
morphologies (nanofibers, nanorods, nanotubes, 
nanospheres, granules). It has been proven that it 
depends on the nature of the oxidizing agent or the 
presence of additives in the reaction mixture [29].  
For example, by varying the synthesis conditions, it is 
possible to obtain PANI with a granular structure [30], 
and in a weakly acidic environment, PANI is obtained 
in the form of nanotubular particles [31]. 
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Fig. 2. Oxidative doping of leucoemeraldine base and doping emeraldine base with protic acid; A is anion 

 
Various PANI structures are characterized by  

a set of morphological features (shape of structural 
units, specific surface area, pore size), which 
determine the accessibility of PANI macromolecules 
to electrolyte ions, and the electronic and redox 
properties determine the maximum possible power 
and energy intensity of devices based on it [32–34]. 

The main methods for carrying out 
electrochemical synthesis are galvanostatic  
(at a constant current) [35–37], potentiostatic  
(at a constant electrochemical potential) [38] and 
potential cycling modes [39]. The yield, morphology, 
electrochemical behavior, adhesion to the electrode, 
optical properties and other characteristics of the 
PANI film obtained by electrosynthesis are 
determined by polymerization conditions, such as the 
type and concentration of the electrolyte, the nature 
of the electrode, and synthesis modes [35]. 

Most often, the electrochemical synthesis of 
PANI is based on the anodic oxidation of aniline at 
various electrodes. This is due to the possibility of 
obtaining a purer polymer without oxidizing agent 
impurities, as well as the possibility of controlling the 
thickness of the film and observing the process of its 
formation using various physical and chemical 
methods (optical, electrochemical, etc.). Moreover, 

the molecular weight of PANI synthesized by 
electrochemical polymerization methods is usually 
lower than that of chemical synthesis [40]. 

Compared to chemical polymerization, 
electrochemical synthesis is faster and does not 
require the use of oxidizing agents and additives.  
The advantages of the method also include the ability 
to regulate the conditions (potential and current)  
of PANI deposition and the almost complete absence 
of by-products. At the same time, the morphological 
forms of PANI are not so diverse: nanofibers, 
nanogranules, or thin films on the surface of the 
substrate [41–43]. 

However, the electrochemical method is only 
suitable for producing polymer in small quantities, 
while the chemical method allows the production of 
polymer in large volumes [44]. 

The processes of converting aniline into PANI 
during chemical and electrochemical polymerization 
are similar to each other and occur in several stages 
(Table 1) [30]. 

As findings show, the duration of the 
induction period depends on the synthesis conditions 
and can increase with a decrease in the initial 
temperature of aniline oxidation or shorten with 
increasing acid concentrations [45]. 

Emeraldine base 

Dedoping –2n HA + 2n HA  
Doping emeraldine base  

with protic acid 

Emeraldine salt 
in bipolaronic form 

Emeraldine salt  
in polaronic form 

Oxidative 
doping 

Reduced  
dedoping 

Leucoemeraldine  
base

–2n e–

+2n A–
+2n e–

–2n A–
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Table 1. Characteristics of the stages of aniline oxidative polymerization 
 

Stage Observed phenomena Products formed 

Rapid exothermic oxidation of 
neutral aniline molecules  

Increase in temperature, decrease in pH  Non-conducting oligomers 

Induction period Temperature remains virtually unchanged, 
pH decreases moderately 

Aniline trimers 

Rapid polymerization of anilinium 
cations 

Rapid heat release is accompanied by the 
formation of protons  

Oligomeric and polymeric 
products 

 
The induction period also becomes shorter when 

the reacting mixture contains an inert solid material 
with a high surface area (carbon nanotubes, graphite) 
[46]. This is explained by the phenomenon of 
adsorption of oligomers and the formation of 
nucleates on such substrates. 

The decrease in pH during oxidative 
polymerization is explained as follows: during the 
formation of bonds between aniline molecules and 
oligomers or polymers, hydrogen atoms are 
eliminated in the form of protons and form sulfuric 
acid with the persulfate reduction product [47–51]. 

The course of the reaction and the nature of the 
final product (structure, physicochemical properties, 
redox form) are influenced by factors such as the 
acidity of the medium, the nature and concentration 
of the oxidizing agent. 

Aniline oxidation can be started in an acidic or 
alkaline environment. In this case, some phases may 
be absent depending on the initial pH of the reacting 
mixture. If oxidation begins in an alkaline 
environment, oligomers quickly form and the reaction 
mass becomes brown. 

Conductive forms of PANI are formed in an 
acidic environment. In this case, practically no 
exothermic formation of brown oligomers is 
observed. A low concentration of neutral aniline 
molecules slows down the formation of short 
oligomers (mainly semidine dimers). The light blue 
color visible at this stage is due to the formation of an 
oxidized dimer. Semidines subsequently participate 
in the formation of trimers (nucleates), which become 
initiation centers for the growth of PANI chains.  
As a result, the polymer is the main product of the 
reaction; oligomers are present only in minor 
quantities [52]. 

The nature of the oxidizing agent, especially its 
redox potential, has a significant impact on the 
morphology and properties of PANI [53]. Persulfates 
(ammonium persulfate and potassium persulfate  
[54–58] and iron chloride FeCl3 [59–62] are most 
often used as oxidizing agents in the synthesis of 

PANI. However, when using FeCl3, polymerization 
proceeds at a lower rate, since its redox potential 
(0.77 V) is lower than that of ammonium persulfate 
(2.0  V) [63]. However, ammonium persulfate also 
has disadvantages: it is stoichiometrically consumed 
in the reaction, which leads to the formation of acidic 
by-products during the synthesis of the polymer [64]. 
For environmentally friendly synthesis of PANI,  
the use of FeCl3 and ozone as a catalyst and oxidizer, 
respectively, has been proposed [65]. The only 
byproduct formed during the reaction under these 
conditions is water. 

When ammonium persulfate is used as an 
oxidizing agent, the molar ratio “aniline: ammonium 
persulfate” (r) has a different effect on the yield, 
elemental composition, electrical conductivity and 
degree of oxidation of the resulting product.  
At r ≤ 1.15, the characteristics of PANI are 
practically independent of the molar ratio.  
At r > 1.15, overoxidation of PANI accompanied by  
a decrease in the yield of the polymer, its 
conductivity, and a noticeable change in its 
morphology [66] is observed. The optimal molar ratio 
“aniline: ammonium persulfate” is 1 : 1.25 [4].  
An increase in the concentration of ammonium 
persulfate by two times compared to the 
concentration of aniline leads to the rupture of 
polymolecular chains, the formation of quinoid 
compounds and overoxidized forms of PANI.  
The use of ammonium persulfate in an amount less 
than half that of aniline causes a decrease in the yield 
of PANI to 40–50 %. A number of authors believe 
[22, 67] that ammonium persulfate is involved in the 
processes of both initiation and growth of chains. 

A number of other compounds are also used as 
oxidizing agents: manganese oxides [68–70], 
potassium (VI) dichromate K2Cr2O7 [71], cerium 
(IV) sulfate Ce(SO4)2 [72], copper (II) chloride 
CuCl2 [73], copper (II) nitrate Cu(NO3)2 [74], 
potassium ferricyanide (K3(Fe(CN)6) [75] and 
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sodium vanadate (NaVO3) [76]. Compounds of noble 
metals (Au (II), Pt (IV), Pd (II), Ag (I)) [77], 
hydrogen peroxide [78, 79], potassium permanganate 
[80, 81] are also used as oxidizing agents. 

In the case of using oxidizing agents such as 
cerium (IV) sulfate and potassium dichromate at 
higher concentrations (r > 1.15), a complexation 
reaction probably occurs, which leads to the 
production of products containing a large percentage 
of the metal [66]. 

There is information about the use of a mixture 
of oxidizing agents, including FeCl3 / H2O2 [82] and 
KIO3 / NaClO [83]. To accelerate the synthesis of 
PANI, researchers resorted to the use of catalysts, 
which are enzymes, for example, horseradish 
peroxidase [84], enzymes of the oxidoreductase  
class [85]. 

A number of researchers propose unconventional 
methods for the synthesis of PANI: polymerization of 
aniline under the influence of X-ray irradiation in the 
presence of nitrate ions [86]; dispersion 
polymerization in a weak magnetic field [87]; matrix 
synthesis of PANI on a solid support [88]; oxidation 
of aniline hydrochloride with ammonium persulfate 
in non-aqueous media (acetone, methanol, toluene) 
[89]; plasma polymerization of aniline [90], 
photoinduced polymerization [91]. 

 
4. Preparation and properties  

of PANI composites with carbon nanomaterials 
 

4.1. PANI / CNT composites 
 

Currently, to obtain nanocomposites of PANI 
with carbon nanotubes, the method of oxidative 
polymerization of aniline on the surface of CNTs  
is most often used [93–99]. This is due to the fact that 
this approach has a number of advantages over other 
methods. Thus, the ability to change synthesis 
conditions opens up prospects for obtaining materials 
with specified characteristics (specific capacitance, 
electrical conductivity, specific surface area) for a 
specific field of practical application. It is also 
possible to implement this method on an industrial 
scale [92]. 

Studies of the morphological features of 
composites have shown that in composites a layer of 
polymer, the thickness and roughness of which is 
determined by the mass fraction of each component, 
uniformly covers the surface of the CNT [100].  
It is noted that, in comparison with emeraldine,  
PANI deposited on the surface of CNTs has an 
increased content of quinonediimine fragments.  

This is explained by stacking interactions between 
PANI and carbon nanotubes [93]. 

There is information about the influence of the 
composition of composites on their characteristics.  
It has been shown that PANI/CNT composites have 
higher electrical conductivity compared to the value 
of this parameter for individual components (PANI 
and carbon nanotubes) [49]. It has been 
experimentally shown that the initial PANI has the 
lowest electrical conductivity; with increasing CNT 
content in the composite, an increase in electrical 
conductivity is observed (Table 2). It is assumed that 
the increase in electrical conductivity is due to the 
presence of interaction between the amino groups of 
PANI and CNTs, which facilitates charge transfer 
between the polymer and carbon nanotubes [100]. 

 
Table 2. Electrical conductivity of PANI  

and its composites with carbon nanotubes, 
characterized by different mass contents of CNTs 

 

Composite 
Electrical 

conductivity, 
S⋅cm–1 

Source

PANI/CNT (0.2 wt. %) 0.8 · 10–3 [100] 
PANI/CNT (10 wt. %) 6.6 · 10–2 
PANI 1.0 · 10–2 [101] 
PANI/MWCNT (0.5 wt. %) 2.9 · 10–1 
PANI/MWCNT (1 wt. %) 1.10 
PANI 0.18 [102] 
PANI/MWCNT (5 wt. %) 0.85 
PANI/MWCNT (15 wt. %) 1.10 
PANI 0.17 [103] 
PANI/MWCNT (0.25 wt. %) 0.22 
PANI/MWCNT (8 wt. %) 3.32 
PANI 6.25 [104] 
PANI/MWCNT (5 wt. %)  17.54 
PANI/MWCNT (10 wt. %) 20.66 
PANI/MWCNT (15 wt. %) 23.10 
PANI/CNT (1 : 1) 10.00 [105] 
PANI/CNT (2 : 1) 6.67 
PANI/CNT (4 : 1) 1.72 
PANI/CNT (8 : 1) 0.41 
PANI 0.028 [106] 
PANI/carboxylated CNT (1 wt. %) 0.126 
PANI/carboxylated CNT (6 wt. %) 6.154 
PANI/carboxylated CNT (7 wt. %) 3.349 
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Other properties of composites with PANI also 
depend on the CNT content. A change in the 
dielectric properties of the material is observed with 
increasing concentration of single-walled CNTs 
[107]. The relaxation process, analyzed using the 
Kohlrausch-William-Watts (KWW) model, is found 
to occur at lower nanofiller loadings, but gradually 
decays as the number of SWCNTs increases, yielding 
relaxation spectra that gradually resemble those of  
a pure conductor. In addition, the competing 
processes between the effects of electrical percolation 
and interfacial capacitance are found to be inherently 
dependent on the carbon filler content. 

In the literature, there are few results of studies 
of the mechanical properties of PANI composites 
with carbon nanotubes. Materials testing 
demonstrated an increase in tensile stress by 150 % 
and Young’s modulus by 110 % when 2 wt. % CNTs 
were added to the polymer [108]. Huang J. et al. 
report that the tensile strength of PANI/CNT film 
composites increases significantly to 232.3 MPa, 
which is more than twice the tensile strength of 
carbon nanomaterial (67.2 MPa). The increased 
tensile strength of the composites can be attributed to 
the interfacial adhesion between the carbon nanotube 
film and PANI, promoting more efficient stress 
transfer [109]. 

One way or another, obtaining a CNT dispersion 
is an important stage in the production of PANI/CNT 
nanocomposite material by chemical polymerization. 
As indicated in a number of studies, covalent 
modification of CNTs with carboxyl [110] or sulfo 
groups [94] allows both to ensure the dispersibility of 
CNTs in water and to act as a matrix for the 
polymerization of aniline due to interaction with the 
monomer and the resulting PANI. In addition, after 
introducing acid groups, nanotubes can act  
as a modifying additive for PANI, which allows 
polymerization to be carried out in water without 
adding acid. However, it should be noted that 
polymerization in the absence of an additional 
modifying additive leads to the production  
of a nanocomposite material with a low degree of 
doping and, accordingly, low conductivity (about  
10–2 S⋅cm–1) [94]. 

Pre-functionalized CNTs have been used to 
prepare PANI composites in other studies. 
Carboxylated multiwalled CNTs can be used as  
a dispersed carrier in a composite material 
demonstrating sensor sensitivity to ammonia [111]. 
Polyaniline was deposited onto the surface of 
multiwalled CNTs (MWCNTs) pre-oxidized in  
a mixture of nitric and sulfuric acids, and it was 
possible to obtain a composite with a specific surface 

area of 133.55 m2⋅g–1 and a specific capacity  
of 867 F⋅g–1 [112]. Similarly prepared CNTs were 
used to obtain ternary CNT/PANI/ZnO composites, 
which have the ability to effectively absorb gamma 
radiation [113]. 

However, CNT functionalization does not 
always have a positive effect on the properties of 
composites. There are results indicating that pre-
oxidation of CNTs contributes to a decrease in the 
conductive properties of the material [80]. There is no 
contradiction in these data, since most studies did not 
take into account the content of functional groups in 
CNTs. Dyachkova T.P. and colleagues were the first 
to analyze the influence of the method and degree of 
preliminary functionalization of carbon nanotubes on 
the process of oxidative polymerization of aniline 
[114]. A correlation has been established between the 
maximum value on the temperature curve of this 
reaction and the yield of its target product with the 
depth of preliminary oxidation of CNTs. The nature 
of the dependence of the electrically conductive 
properties of composites and the value of their 
specific surface area on the degree of preliminary 
functionalization of CNTs with carboxyl groups is 
shown. Composites based on carboxylated CNTs 
with a degree of functionalization of 0.2 mmol⋅g–1 
have the best electrical conductivity (3 S⋅cm–1). 
Materials with the maximum specific surface area 
(more than 170 m2⋅g–1) were obtained using CNTs 
oxidized with concentrated nitric acid as a substrate 
for the deposition of PANI. 

Based on the results of calculations obtained by 
molecular dynamics methods, a mechanism for the 
modification of carboxylated CNTs with PANI was 
proposed [115]. It has been shown that phenazine 
nucleates during the oxidative polymerization of 
aniline are formed on the surface of nanotubes, 
desorbed into the bulk of the reaction mixture, where 
PANI macromolecules then grow. 

 
4.2. PANI / graphene composites 

 
Over the past decade, graphene, which consists 

of a single layer of sp2-hybridized carbon atoms 
linked into a hexagonal two-dimensional crystal 
lattice, has attracted enormous research attention as  
a functional material. This is due to its high electrical 
and thermal conductivity, high mechanical strength 
and high specific surface area [116–123].  
In particular, its structure and unique electron 
transport properties make graphene in combination 
with a conducting polymer (for example, PANI)  
a promising material for the manufacture of 
electronic, electrochemical and optoelectronic 
devices [124–126]. 
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Nanocomposites of PANI with graphene and its 
derivatives can be obtained in various ways, for 
example, chemical oxidative polymerization  
[127, 128], electrochemical oxidative polymerization 
[129, 130], interfacial polymerization [131], by 
mixing the starting components (polymer and 
graphene material) [132, 133]. 

The efficiency and simplicity of the method of 
chemical oxidative polymerization of aniline on the 
surface of graphene has made it the most common 
method for preparing PANI/G nanocomposites.  
It is reported that when using this approach to 
improve the electrochemical characteristics of 
composites and reduce the proportion of PANI in the 
volume of the reaction mixture, it is advisable to pre-
functionalize the surface of graphene materials either 
with organic molecules or oxygen-containing 
functional groups. Thus, additional centers for 
polymer growth will be created on the surface of the 
carbon material [134]. Synthesis conditions and the 
percentage of polymer and carbon material in the 
final product affect the morphology of PANI/G 
composites. It has been reported that various 
nanostructures have been obtained: nanospheres 
[128], nanofibers [135, 136] or nanotubes [137]. 

The oxidative polymerization method can also 
be used to coat other carbon nanostructures, for 
example, mesoporous carbon, with PANI [138]. 

Methods for electrochemical oxidative 
polymerization of aniline in the presence of hafen are 
divided into potentiostatic [139] and potentiodynamic 
methods [134]. 

A distinctive feature of interfacial polymerization 
is that the aniline monomer is dissolved in organic 
solvents (for example, chloroform, benzene), and the 
oxidizing agent is dissolved in an aqueous acid 
solution. After transferring the prepared solutions into 
the reactor, an organic solvent/water interface is 
formed, at which the polymerization reaction  
occurs [131]. As a result of this approach, the 
PANI/G composite, which comes in the form of  
a composite film that can be easily separated, is 
formed at the interface [140]. 

It is also possible to obtain PANI-graphene 
composites by mixing and sonicating a dispersion of 
graphene material with previously prepared PANI 
[132–134]. The disadvantage of this approach is the 
instability of composites and their tendency to phase 
separation [132]. This drawback was eliminated  
by activating the graphene surface with the formation 
of acid chloride groups that interact with PANI  
[132–134]. 

4.3. Hybrid composites 
 

In addition to binary PANI composites, the 
preparation of materials combining PANI, CNTs, 
graphene structures and other types of carbon 
materials has also been reported. The use of such 
combinations makes it possible to eliminate the 
disadvantages of individual dispersed carriers and, in 
some cases, achieve synergistic effects on various 
properties. 

Graphene/carbon nanotubes/PANI composite 
can be used as a supercapacitor electrode material, 
which has a high specific capacitance (1035 F⋅g–1) 
and retains up to 94 % of the original capacity after 
1000 charge/discharge cycles [141]. 

By combining a mixture of CNTs and graphene 
oxide with ready-made PANI and subsequent 
carbonization, a composite is obtained with the 
specific surface 176 m2⋅g–1 and the specific pore 
volume 0.232 cm3⋅g–1 [142]. 

Based on PANI-modified carbon nanotubes and 
graphene, a mesoporous airgel with a specific surface 
area of 289 m2⋅g–1 was obtained in a high-pressure 
autoclave in a supercritical isopropanol environment 
[143]. In this system, CNTs act as structure formers, 
preventing the agglomeration of graphene sheets, and 
PANI astices have a spherical shape. When using 
reduced graphene oxide and oxidized CNTs to form 
an airgel, it is possible to obtain a material with  
a higher specific surface area of 315 m2⋅g–1  [144]. 

Natural carbon materials are often used as one of 
the components of hybrid composites. For example, 
the authors of [145] obtained a stable porous sorbent 
by combining PANI, multi-walled carbon nanotubes 
and chitosan cryogel. To obtain a flexible composite 
with a developed surface, porous wood was used, on 
the surface of which a layer of electrically conductive 
CNTs was deposited, after which the surface of the 
material was coated with PANI in situ [146].  
A flexible supercapacitor based on this composite has 
a high specific capacity of 45.89 F⋅g–1 at a current  
of 0.2 A⋅g–1; after 1000 charge-discharge cycles, 
about 99% of the capacity is retained; in addition, 
even when bent by 120°, 62.9 % of capacity is 
retained. By introducing PANI into a conductive 
network based on a hybrid material “nanocellulose – 
multiwalled carbon nanotubes”, a film airgel 
electrode with a specific capacitance of the order of 
2176.3 mF⋅cm–2 was obtained [147]. 
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5. Application of PANI 
and composites based on it 

 
PANI and its composites are of great interest for 

various fields of application due to the availability of 
fairly simple methods for their preparation and the 
possibility of synergistic effects when combining a 
dopant and PANI. Recently, most attention has been 
paid to the production of composites for use as 
electrode materials for supercapacitors, sorbents, and 
radiation-absorbing materials (Table 3). 

As discussed above, PANI comes in  
a variety of forms, each with its own properties and 
applications. Leucoemeraldine, a fully reduced form 
of PANI, has found applications in electrochromic 
devices and lithium polymer batteries. Emeraldine 
salt, which is highly electrically conductive, is used 
in the sensor industry as an electromagnetic shielding 
material, in electrochromic devices, and as an 
electrode material in batteries. Some gas sensors are 
made using emeraldine salt. Pernigraniline is used in 
nonlinear optics [160, 161]. 

Composites based on PANI have high stable 
electrical conductivity and capacitance (up to  
4800 F⋅g–1 [162]) (Table 4). It has also been 
established that the entire volume of material is 
involved in storing the charge. This sets this polymer 
apart from other conductive materials in which 
charge storage occurs only on the surface. Therefore, 
composites with PANI can be successfully used as 
materials for chemical current sources and 
supercapacitors. For these purposes, binary and three-
component composites are being developed that 

combine PANI, carbon nanomaterials, and metal 
oxides [163, 164]. 

The ability of PANI and composites based on it 
to absorb radiation (due to a combination of magnetic 
and dielectric properties) opens up prospects  
for the creation of radio-absorbing [175, 176]  
and electromagnetic interference shielding materials 
[177, 178]. 

PANI and materials containing it can prevent or 
slow down the oxidation of metal by atmospheric 
oxygen, which makes it possible to manufacture anti-
corrosion coatings [179–181]. 

The possibility of using PANI in tissue 
engineering biosensing and targeted drug delivery has 
been reported [182, 183]. In addition, PANI  
is considered as a biocidal additive in the production 
of coatings that protect against viruses [184]. 

Moreover, composites based on PANI-modified 
carbon nanotubes can find wide application in 
electrochemical sensors, solar energy converters, and 
highly efficient sorbents for heavy metals, bacteria 
and viruses. 

Let us give a number of examples. PANI/CNT 
composites are proposed to be used in sensors for 
ammonia detection [185–187]. The detection 
mechanism is regulated by deprotonation of the 
emeraldine salt of PANI by NH3 molecules and 
conversion to the emeraldine base of PANI, which 
leads to an increase in electrical resistance. It has 
been shown that temperature has a strong influence 
on the performance of sensors. The introduction of 
CNTs into the composite reduces this effect. 

 
Table 3. Application areas of composites based on PANI and carbon nanomaterials 

 

No. Composite Application Source 

1 PANI/ MWCNT Electrode materials for supercapacitors [148] 
2 PANI/G Electrode materials for supercapacitors [149] 
3 PANI/GO/G Electrode materials for supercapacitors [150] 
4 PANI/regenerated exhaust gas  Electrode materials for supercapacitors [151] 
5 PANI/porous carbon microspheres  Electrode materials for supercapacitors [152] 
6 PANI/GO 

PANI/CNT 
Sorbents [153] 

7 PANI/GO/CNT Sorbents [154] 
8 PANI/regenerated exhaust gas Sensors for temperature, relative humidity, pesticide detection [155] 
9 PANI/carboxylated CNTs  Biosensors [156] 

10 PANI/ MWCNT/ STARCH Biosensors [157] 
11 PANI/CNT/Gold nanoparticles Sensors for detecting zinc, lead and copper [158] 
12 PANI/CNT Microwave absorbing materials [159] 
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Table 4. Specific capacity and stability of PANI and its composites 
 

No. Composite 
Specific 

capacitance, 
F⋅g–1 

Current (A⋅g–1)  
or scan rate  

(mV⋅s–1) 
Capacitance conservation Source 

1 PANI/CNT/MoS2 350 10 A⋅g–1 68 % after 2000 cycles [165] 

2 PANI/GO/MoS2 815 10 mV⋅s–1 93 % after 100 cycles [166] 

3 PANI/GO/TiO2 713 10 mV⋅s–1 94 % after 100 cycles 

4 MWCNT 30 0.4 A⋅g–1 – [167] 
5 PANI 210 0.4 A⋅g–1 – 
6 PANI/MWCNT/TiO2 270 0.4 A⋅g–1 67 % after 6000 cycles 

7 PANI/MWCNT/Ni(OH)2 1917 1.0 A⋅g–1 75 % after 1000 cycles [168] 

8 PANI/polyndol (2:1) 682.4 0.5 A⋅g–1 78.6 % after 1000 cycles [169] 
9 PANI/polyndole/MWCNT (3 wt. %) 895 0.5 A⋅g–1 97.8 % after 1000 cycles 
10 PANI/CNT/graphene 415 3 A⋅g–1 96 % after 5000 cycles [170] 
11 PANI/graphene 310 3 74 % after 5000 cycles 
12 PANI/CNT 215 3 84 % after 5000 cycles 
13 PANI/reduced GO/Fe3O4 486.5 1 52.1 % after 2000 cycles [171] 
14 PANI/sulfonated graphene/NiO 1350 1 92.23 % after 5000 cycles [172] 
15 PANI/GO/MWCNT 696 20 mV⋅s–1 – [173] 
16 PANI/GO/CoFe2O4 781.27 1 mV⋅s–1 79.03 % after 5000 cycles [174] 

 
PANI composites with reduced graphene oxide 

have been used to fabricate a VOC sensor that 
exhibits high sensitivity towards methanol gas [188]. 
To detect nitrite in tap and rain water, an electrode 
modified with a reduced graphene oxide/MnFe2O4/ 
PANI composite was developed [189]. 

Electrically conductive PANI/CNT composites 
have found application in the creation of various 
electrochemical enzyme sensors: sensors for the 
detection of ascorbic acid [190], glucose [191], 
phenolic compounds [192], pesticides [193], and 
cholesterol [194]. A sensor based on PANI and 
graphene oxide was developed to determine cortisol 
in human saliva [195]. 

The possibility of using PANI/CNT composites 
in solar cells was studied [196, 197]. It was shown 
that the performance of solar cells increases as a 
result of using a PANI/CNT composite. The increase 
in conversion efficiency is explained by more 
efficient charge transfer due to suppression of the 
charge recombination process [198]. 

Composite adsorbents consisting of PANI and 
carbon nanomaterials are increasingly considered as 
promising materials for water purification due to their 
ability to sorb various types of pollutants  
[199–201]. The prospects for using PANI as an 
adsorbent are due to the presence of adsorption 

centers, which are amine and imine groups that 
interact with pollutants in aqueous solutions [202]. 

It was shown that PANI/CNT composites can be 
used for the sorption of copper and nickel ions from 
water [203]. At the same time, deprotonation of 
PANI has little effect on this process, and the 
conversion of the modifying layer of PANI into the 
leucobase form upon reduction with hydrazine 
sharply increases the sorption capacity of the material 
for copper ions. PANI/CNT and PANI/GNP 
composites can be used for the sorption of various 
pollutants and pathogenic microorganisms [204], and 
the successful use of PANI/CNT composites for the 
extraction of scandium ions from aqueous media has 
been reported [205]. 

Hybrid composites based on mixtures of CNTs 
and graphene materials embedded with PANI 
demonstrate high sorption capacity with respect to 
zinc ions (346 mg⋅g–1 at pH 6.5) [142] and lead  
(350 mg⋅g–1) [143] and others heavy metals [144]. 

Some sources report quite unusual applications 
of PANI-based composites. PANI-modified graphene 
nanoplatelets were used as a reinforcing filler for a 
composite based on highly oriented ultra-high 
molecular weight polyethylene (UHMWPE)  
[206, 207]. It was found that PANI helps to reduce 
the aggregation of GNP in the polymer matrix and 
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increase the degree of its crystallinity. The new 
lamellar crystal structure has high stretchability.  
The highest tensile strength of 1330 MPa has  
a composite containing 2 wt. % GNP/PANI filler,  
and the highest value of Young’s modulus of 41 GPa 
is observed at 1 % content of the modified filler. 

 
6. Conclusion 

 

In this review, we have shown the promise of 
using PANI and its composites with carbon 
nanomaterials in various industries due to their 
unique electrical, physical, chemical, and optical 
properties. Recent studies show that combining PANI 
with various substances (carbon nanotubes, graphene, 
graphene oxide, metal oxides) can improve the 
performance characteristics of the polymer. 

However, despite numerous studies and positive 
results, many challenges still need to be overcome on 
the path to commercialization of composites.  
The analyzed studies are devoted to the development 
of new materials of complex composition, the study 
of their properties, and specific proposals for 
practical use. 

A generalization of scientific results shows that 
the selection of the optimal composition of 
composites remains relevant in order to find ways to 
increase their electrical capacity and cyclic stability, 
increase electrical conductivity and specific surface 
area. For this purpose, materials are developed that 
consist of three or more components. And obviously, 
by varying their mass ratio, fundamentally different 
materials can be obtained. It has been shown that the 
properties of composites with PANI depend on the 
presence of functional groups on the CNM surface. 
Although such information is available in the 
literature, it is scattered and requires additional study. 

It is assumed that in the near future, composites 
being developed with PANI may become the basis of 
many technologies that provide a high-quality 
standard of living (ecology, energy, safety), but for 
this it is necessary to continue scientific research. 
Thus, it is necessary to establish what effect 
functional groups on the surface of carbon 
nanomaterials have on the performance 
characteristics of composites. To evaluate the 
effectiveness of composites, it is necessary to test 
them in practice, and for further commercialization it 
is necessary to develop protocols/recommendations 
that include a description of methods for obtaining 
composites with a given structure and properties. 
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